Climate change, financial stability and monetary policy

Yannis Dafermos¹ Maria Nikolaidi² Giorgos Galanis³

¹University of the West of England

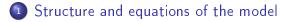
²University of Greenwich

³Goldsmiths, University of London; New Economics Foundation

Workshop on Central Banking, Climate Change and Environmental Sustainability, 14-15 November 2016, Bank of England

- Climate change is likely to have severe effects on the stability of the financial system.
- So far, most quantitative analyses have concentrated on the transition risks (see e.g. Carbon Tracker Initiative, 2011; Comerford and Spiganti, 2015; Battiston et al., 2016; Plantinga and Scholtens, 2016).
- Much less attention has been paid to the impact of climate change on financial stability as a result of its economic damages (physical risks).

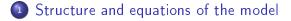
Two key physical risks for the financial system:


- The increase in temperature and the economic catastrophes caused by climate change could reduce the **profitability** of firms and could deteriorate their financial position. Accordingly, debt defaults could arise which would lead to **systemic bank losses**.
- Lower firm profitability combined with global warming-related damages can affect the **confidence** of investors, inducing a rise in liquidity preference and a **fire sale** of the financial assets issued by the corporate sector.

- In this paper, we develop an **ecological macroeconomic model** that sheds light on these financial stability effects of climate change.
- The model builds on the stock-flow-fund model of Dafermos et al. (2017) which relies on a novel synthesis of the stock-flow consistent approach (see Burgess et al., 2016) with the flow-fund model of Georgescu-Roegen (1971, ch. 9; 1979; 1984).
- Our model permits a more detailed examination of the financial stability effects of climate change compared to Dietz et al. (2016). In particular, our framework includes (i) a detailed analysis of the interlinkages between **financial flows** and **assets/liabilities**, (ii) a **portfolio** structure with multiple financial assets and (iii) **money endogeneity** and the feedback effects of finacial instability on economic activity.

A B M A B M

- An additional contribution of this paper is that it examines how monetary policy could reduce the risks imposed on the financial system by climate change.
- Drawing on the recent discussions about the potential use of monetary policy in tackling climate change (see e.g. Werner, 2012; Campiglio, 2016), we examine the extent to which a global green quantitative easing (QE) programme could ameliorate the financial distress caused by climate change.



- 2 Calibration and validation
- Simulation results I: climate change and financial stability
- Simulation results II: green QE

Calibration and validation Simulation results 1: climate change and financial stability Simulation results 11: green QE Conclusion

- 2 Calibration and validation
- 3 Simulation results I: climate change and financial stability
- ④ Simulation results II: green QE
- Conclusion

The model consists of two big blocks and various sub-blocks.

Ecosystem

- Matter, waste and recycling
- Energy
- Emissions and climate change
- Ecological efficiency and technology

Macroeconomy and financial system

- Output determination
- Firms
- Households
- Banks
- Government sector
- Central banks

Calibration and validation Simulation results 1: climate change and financial stability Simulation results 11: green QE Conclusion

Physical flow matrix

	Material	Energy
	balance	balance
Inputs		
Extracted matter	+M	
Renewable energy		+ER
Non-renewable energy	+CEN	+EN
Oxygen	+02	
Outputs		
Industrial CO ₂ emissions	-EMIS IN	
Waste	-W	
Dissipated energy		-ED
Change in socio-economic stock	- <i>ASES</i>	
Total	0	0

Y. Dafermos, M. Nikolaidi, G. Galanis

Climate change, financial stability and monetary policy

া≱ ৰ ≣ ১ ≣ ৩ ৭ ৫ 14/11/2016 9/55

Calibration and validation Simulation results 1: climate change and financial stability Simulation results 11: green QE Conclusion

Physical stock-flow matrix

	Material reserves			Socio-economic stock	Hazardous waste	
Opening stock	REV_{M-1}	$REV_{E:1}$	CO2,AT-1	SES .1	HWS.1	
Additions to stock						
Resources converted into reserves	$+CONV_M$	$+CONV_E$				
CO2 emissions			+EMIS			
Production of material goods				+MY		
Non-recycled hazardous waste					+hazW	
Reductions of stock						
Extraction	-M	-EN				
Net transfer to oceans/biosphere			$+ (\phi_{11} - 1)CO 2_{AT-1} + \phi_{21}CO 2_{UP-1}$			
Demolished/disposed material goods				-DEM		
Closing stock	REV_M	REV _E	CO2 AT	SES	HWS	

Y. Dafermos, M. Nikolaidi, <u>G. Galanis</u>

Climate change, financial stability and monetary policy

< ロ > < 同 > < 回 > < 回 >

Calibration and validation Simulation results 1: climate change and financial stability Simulation results 11: green QE Conclusion

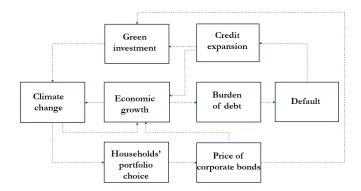
Transactions flow matrix

	Households	Firms Commercial		al banks Government sector		Central banks		Total	
		Current	Capital	Current	Capital		Current	Capital	_
Consumption	-C	+C							0
Government expenditures		+6				-G			0
Conventional investment		+1c	J_c						0
Green investment		+10	10						0
Wages	+22N	-m/N							0
Taxes	-T _N	-T,				+T			0
Firms' profits	+DP	-TP	+RP						0
Commercial banks' profits	+BPp			-BP	+BP u				0
Interest on deposits	+int_DD.,			-int_DD_1					0
Capital depreciation		-ðK.,	+ ôK.,						0
Interest on conventional loans		-int cL c.		+int cL cs					0
Interest on green loans		-int CL G.1		+int cL c.1					0
Interest on conventional bonds	+ coupon c b cuss	-coupon ch c.i					+contrast cb ccast		0
Interest on green bonds	+ cospon a b GH-1	-coupon a b a.1					+cospon a b acts-1		0
Interest on government securities	+int_SEC No.			+ist_SEC a.t		-int_SEC.,	+int_SEC cart		0
Interest on advances				int A.			+int A.		0
Central bank's profits						+CBP	-CBP		0
\deposits	-⊿D				+⊿D				0
∆conventional loans			+ \D_c		- DLc				0
Agreen loans			+⊿L _c		-dLc				0
Aconventional bonds	2040 cm		+p c∠0 c					2 c40 cca	0
∆green bonds	¢с⊿¢сн		+p c∠b c					¢c∆kccs	0
∆government securities	-DSECN				-ASEC 3	+⊿SEC		-ASEC ca	0
∆advances					+⊿A			-4A	0
∆high-powered money					-⊿HPM			+⊿HPM	0
Defaulted loans			+DL		-DL				0
Total	0	0	0	0	0	0	0	0	0

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□▶ ▲□▶

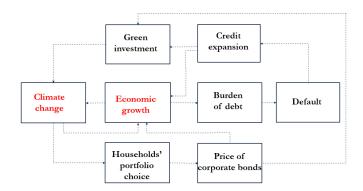
Y. Dafermos, M. Nikolaidi, G. Galanis

Calibration and validation Simulation results 1: climate change and financial stability Simulation results 11: green QE Conclusion


Balance sheet matrix

	Households	Firms	Commercial banks	Government sector	Central	Total
					banks	
Conventional capital		$+K_c$				+K _c
Green capital		$+K_G$				$+K_G$
Durable consumption goods	+DC					+DC
Deposits	+D		-D			0
Conventional loans		-Lc	+L _c			0
Green loans		-Lc	+Lc			0
Conventional bonds	+p_cb_CH	Pcbc			+рсвссв	0
Green bonds	+р _с ь _{сн}	paba			+p g b g cB	0
Government securities	+SEC _H		+SEC _B	-SEC	+SEC _{CB}	0
High-powered money			+HPM		-HPM	0
Advances			-A		+A	0
Total (net worth)	$+V_H$	$+V_F$	$+K_B$	-SEC	+V_G8	$+K_{c}+K_{g}+DC$

э


(日) (日) (日) (日) (日)

Channels through which climate change and financial stability interact in the model

Y. Dafermos, M. Nikolaidi, G. Galanis

Channels through which climate change and financial stability interact in the model

Y. Dafermos, M. Nikolaidi, G. Galanis

Climate change damages

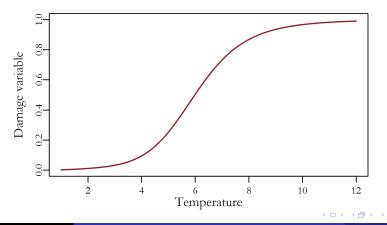
- Industrial CO₂ emissions (*EMIS*_{IN}) are generated when the non-renewable energy resource (*EN*) is utilised in order to produce energy: $EMIS_{IN} = \omega EN$
- The stock of CO_2 that remains in the atmosphere relies on the carbon cycle.

 CO_2 concentration in the **atmosphere**: $CO_{2AT} = EMIS + \phi_{11}CO_{2AT-1} + \phi_{21}CO_{UP-1}$

 CO_2 concentration in the **upper ocean/biosphere**: $CO_{2UP} = \phi_{12}CO_{2AT-1} + \phi_{22}CO_{2UP-1} + \phi_{32}CO_{2LO-1}$

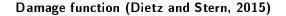
 CO_2 concentration in the lower ocean: $CO2_{LO} = \phi_{23}CO2_{UP-1} + \phi_{33}CO2_{LO-1}$

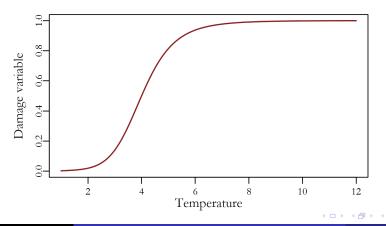
Climate change damages

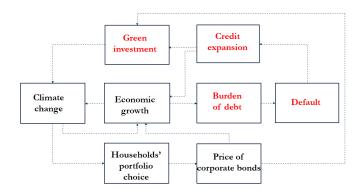

We define the following damage variable (D_T) that takes values between 0 (no damage) and 1 (full damage):

$$D_{T} = 1 - \frac{1}{1 + \eta_{1} T_{AT} + \eta_{2} T_{AT}^{2} + \eta_{3} T_{AT}^{6.754}}$$

- The damage variable is a function of the atmospheric temperature (T_{AT}) . The higher the temperature the higher the damage.
- The damage variable affects (1) labour productivity, (2) labour force, (3) capital depreciation, (4) capital productivity and (5) the components of aggregate demand (consumption and investment).


Climate change damages


Damage function (Weitzman, 2012)


Y. Dafermos, M. Nikolaidi, G. Galanis

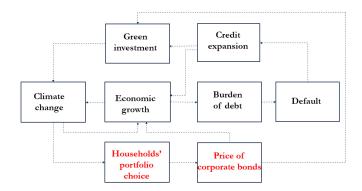
Climate change damages

Channels through which climate change and financial stability interact in the model

Y. Dafermos, M. Nikolaidi, G. Galanis

Credit rationing and bank leverage

• Degree of credit rationing for conventional loans (CR_C):


 $CR_C = r_0 + r_1 def_{-1} + r_2 lev_{B-1}$

• Degree of credit rationing for green loans (CR_G):

 $CR_G = I_0 + I_1 def_{-1} + I_2 lev_{B-1}$

where def is the rate of default and lev_B is banks' leverage ratio.

Channels through which climate change and financial stability interact in the model

Y. Dafermos, M. Nikolaidi, G. Galanis

Conclusion

The portfolio choice of households

$$\begin{bmatrix} \frac{SEC_{H}}{V_{HF-1}} \\ \frac{B_{CH}}{V_{HF-1}} \\ \frac{B_{GH}}{V_{HF-1}} \\ \frac{D}{V_{HF-1}} \end{bmatrix} = \begin{bmatrix} \lambda_{10} \\ \lambda_{20} \\ \lambda_{30} \\ \lambda_{40} \end{bmatrix} + \begin{bmatrix} \lambda'_{10} \\ \lambda''_{20} \\ \lambda''_{30} \\ \lambda''_{30} \\ \lambda''_{40} \end{bmatrix} D_{T-1} + \begin{bmatrix} \lambda_{11} & \lambda_{12} & \lambda_{13} & \lambda_{14} \\ \lambda_{21} & \lambda_{22} & \lambda_{23} & \lambda_{24} \\ \lambda_{31} & \lambda_{32} & \lambda_{33} & \lambda_{34} \\ \lambda_{41} & \lambda_{42} & \lambda_{43} & \lambda_{44} \end{bmatrix}$$
$$\begin{bmatrix} int_{S} \\ yield_{C-1} \\ int_{D} \end{bmatrix} + \begin{bmatrix} \lambda_{15} \\ \lambda_{25} \\ \lambda_{35} \\ \lambda_{45} \end{bmatrix} \frac{Y_{H-1}}{V_{HF-1}}$$

where SEC_H denotes government securities, B_{CH} denotes conventional bonds, B_{GH} denotes green bonds, D denotes deposits, V_{HF} is household wealth and Y_H is household income.

Green investment

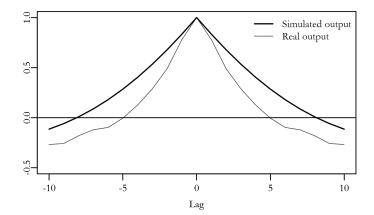
• Share of desired green investment in total investment (β):

$$\beta = \beta_0 + \beta_1 - \beta_2 [sh_{L-1}(int_G - int_C) + (1 - sh_{L-1})(yield_{G-1} - yield_{C-1})] + \beta_3 D_{T-1}$$

where $\beta_0 + \beta_1$ captures the rise in green investment, for example, due to carbon price policies and green regulation, int_G is the interest rate on green loans, int_C is the interest rate on conventional loans, $yield_G$ is the yield on green bonds, $yield_C$ is the yield on conventional bonds and sh_L is the share of loans in total firm liabilities.

Green investment and finance

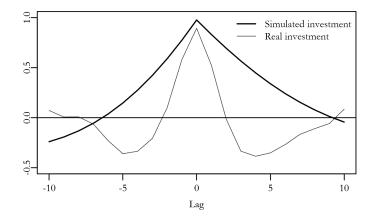
- Firms finance green investment via (1) retained profits; (2) bonds; (3) bank loans.
- The proportion of green investment funded via bonds increases as the yield on bonds declines.
- There is credit rationing: only a proportion of the demanded loans are provided by banks.



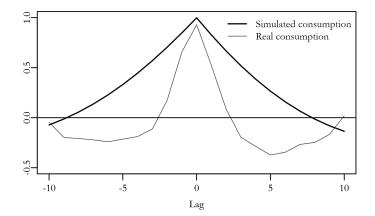
- 2 Calibration and validation
- 3 Simulation results I: climate change and financial stability
- ④ Simulation results II: green QE
- 5 Conclusion

Baseline scenario:

- Very slow transition to a low-carbon economy and no financial collapse in the next decades.
- Economic growth is around 2.7-2.8% till 2050.
- Share of renewable energy increases (from 14% in 2015) to 18% in 2050.
- Energy intensity improves by 30% till 2050.
- Labour force becomes 4.5 bn people in 2050.
- Cumulative green investment in the period 2015-2050 is equal to around USD 35 trillion.
- The price of conventional bonds remains close to its current level till 2050.


Cross-correlation: output

æ


メロト メロト メヨト メヨ

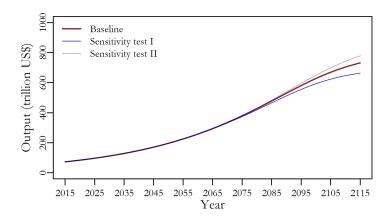
Cross-correlation: investment

(日) (日) (日) (日) (日)

Cross-correlation: consumption

æ

メロト メロト メヨト メヨ



2 Calibration and validation

Simulation results I: climate change and financial stability

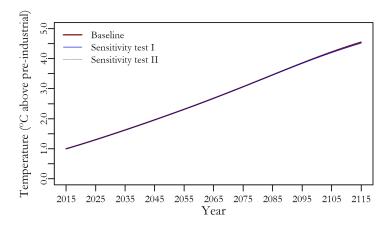

- ④ Simulation results II: green QE
- Conclusion

Output

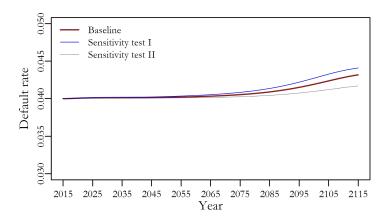
æ

CO₂ emissions

Y. Dafermos, M. Nikolaidi, G. Galanis


Climate change, financial stability and monetary policy

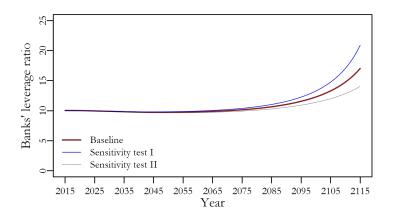
14/11/2016 32 / 55


э

э.

Atmospheric temperature

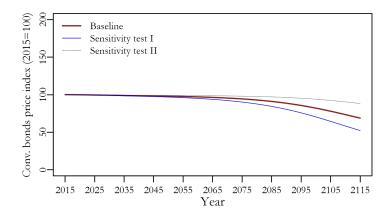
Default rate

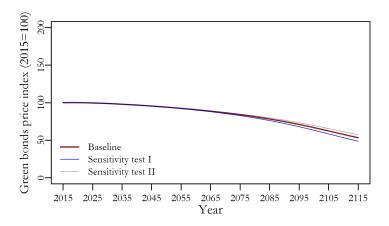


э

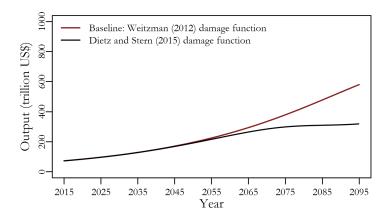
э

★ Ξ →

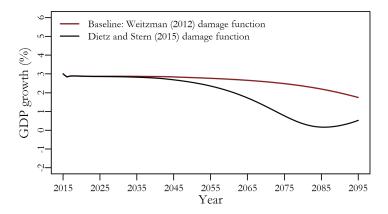

Banks' leverage ratio


э

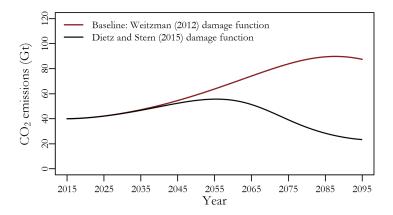
э


Conventional bonds price index

Green bonds price index

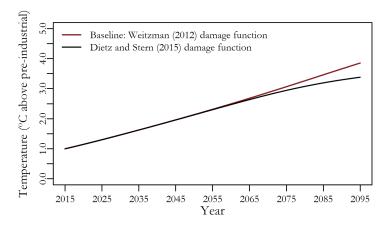


Output

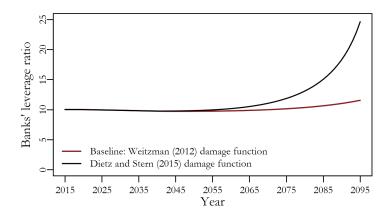


э

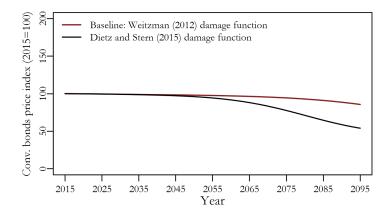
Growth rate of output



CO₂ emissions



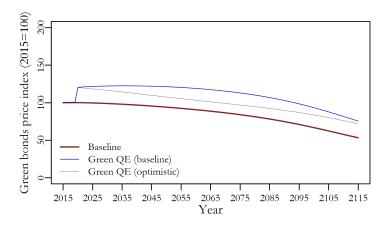
э


Atmospheric temperature

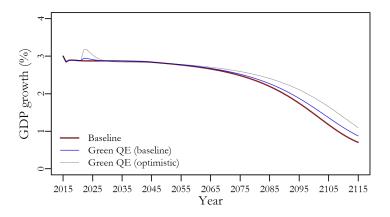
Banks' leverage ratio

Conventional bonds price index

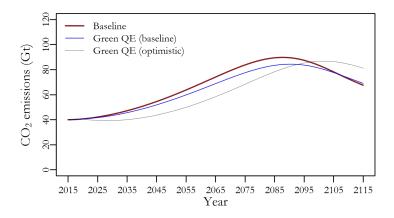
- 2 Calibration and validation
- Simulation results I: climate change and financial stability
- Simulation results II: green QE

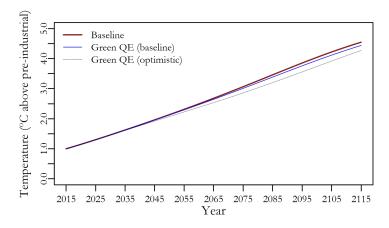

Conclusion

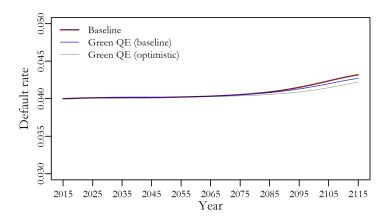
- We suppose that in 2020 central banks around the globe announce that they will purchase 20% of the outstanding **green bonds** and they commit themselves that they will keep the same share of the green bond market over the next decades.
- In 2020 this translates into an amount equal to around USD 180 billion.
- We also assume that the proportion of conventional corporate bonds held by central banks remains equal to its current level.


Green QE affects green investment by reducing the **yield on green bonds**. This has two key effects:

- Firms' desired investment in green technologies increases.
- Firms increase the amount of green investment that is funded via the bond market.

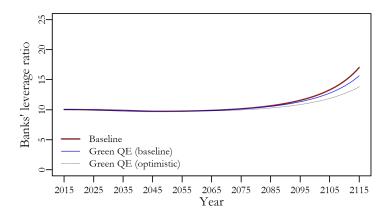

Green bonds price index


Growth rate of output

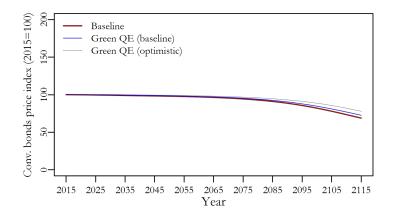

CO₂ emissions

Atmospheric temperature

Default rate



э


э

э.

Banks' leverage ratio

Conventional bonds price index

- Calibration and validation
- ④ Simulation results II: green QE

- By destroying the **capital of firms** and reducing their **profitability**, climate change is likely to increase gradually the burden of debt of firms, leading to a higher rate of default that could harm both the financial and the non-financial corporate sector.
- The damages caused by climate change can lead to a **portfolio reallocation** that can cause a gradual decline in the price of corporate bonds.
- A green QE programme can reduce climate-induced financial instability and restrict global warming. However, green QE does not turn out to be by itself capable of preventing a substantial increase in atmospheric temperature.