

Unhedgeable Risk

How climate change sentiment impacts investment

10.00

Dr Jake Reynolds, Executive Director, Sustainable Economy, CISL Dr Scott Kelly, Research Principal, Centre for Risk Studies

#RewireEconomy

CISL: A unique Cambridge institution

30 years of building leadership capacity to tackle global challenges

60 staff in Cambridge, Brussels, Cape Town

Patron: HRH The Prince of Wales

Global network of **7,000 senior executives**

Business and policy engagement

- Sustainable finance (banking, insurance, investment)
- Natural capital (incl. carbon)
- Equality and wellbeing
- Independent research

Executive and graduate education

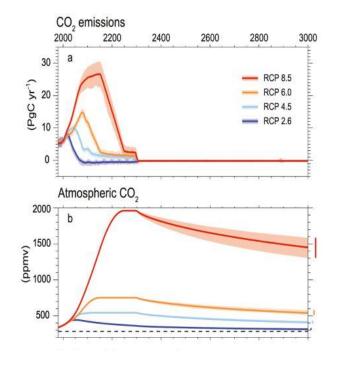
2

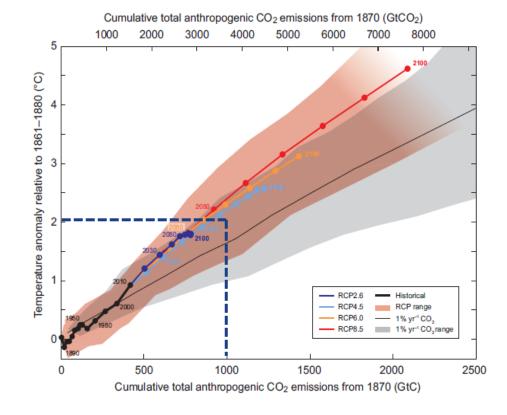
ΡΙΜΟΟ

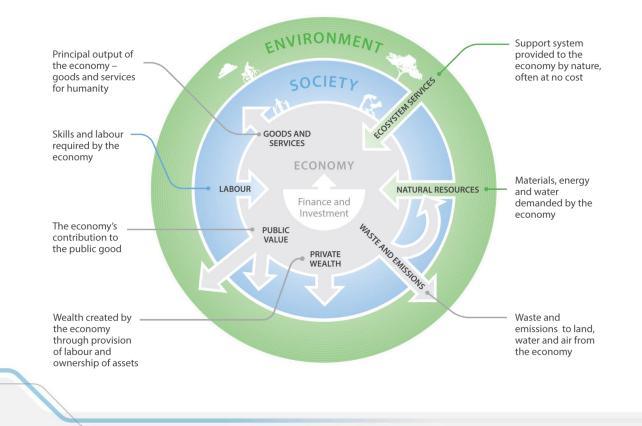
Standard Life Investments

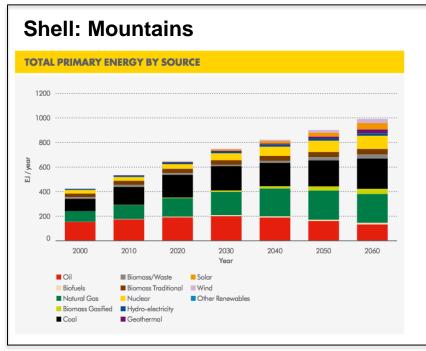
FocusMandates for sustainable investing
Metrics for investment impact
Understanding consumer demand

A question tackled by an interdisciplinary team

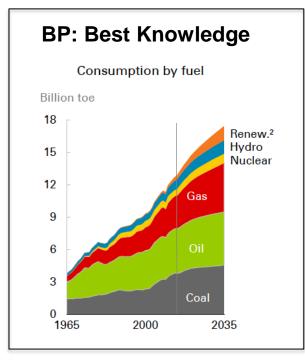

Commissioned by CISL and the ILG


- Collaborative effort of three Cambridge research teams
 - Centre for Risk Studies (CRS)
 - Centre for Climate Change Mitigation Research (4CMR)
 - Cambridge Judge Business School (CJBS)


Cumulative emissions and the "tragedy of the horizon"


The nested model of finance and investment

Inflows and outflows from the economy



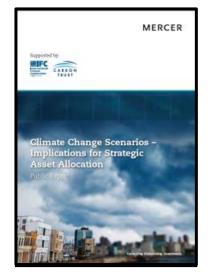
Unburnable carbon and the carbon bubble

Shell Energy Scenarios: New Lenses

http://www.shell.com/global/future-energy/scenarios/new-lensscenarios.html

BP Energy Outlook 2035:

http://www.bp.com/content/dam/bp/pdf/Energy-economics/energyoutlook-2015/Energy_Outlook_2035_booklet.pdf


Meeting 2°C target requires 60% cut in fossil fuels by 2050

The analytical challenge

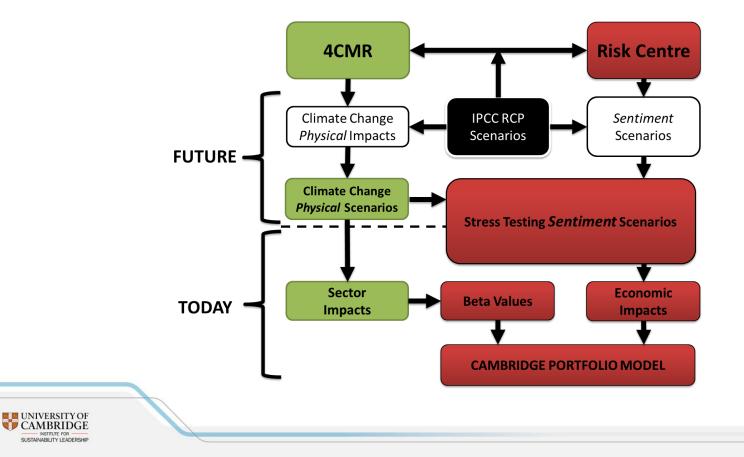
- Estimating economic damages is problematic
- Significant uncertainties
 - Future economic productivity
 - Climate sensitivity
 - Catastrophic climate change and tipping points
 - Human behaviour
- Sensitivities and assumptions
 - What is included / excluded in the analysis
 - Timing of climate policies

Recent reports on the financial impacts of climate change

June 2011

July 2015

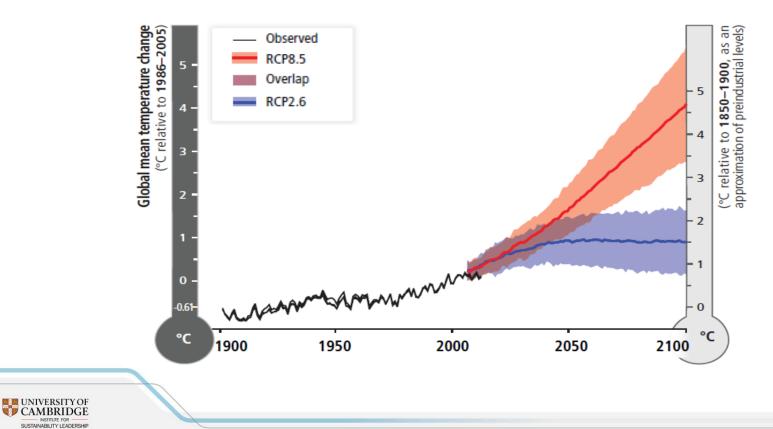
Aug 2015


1. Mercer, 2011. Climate Change Scenarios - Implications for Strategic Asset Allocation. <u>http://www.mercer.com/services/investments/investment-opportunities/responsible-investment/investing-in-a-time-of-climate-change-report-2015.html</u>

2. Mercer, 2015. Investing in a time of climate change (update). http://www.mercer.com.au/insights/focus/invest-in-climate-change.html

3. The Economist, 2015. The cost of inaction.

Structural methodology



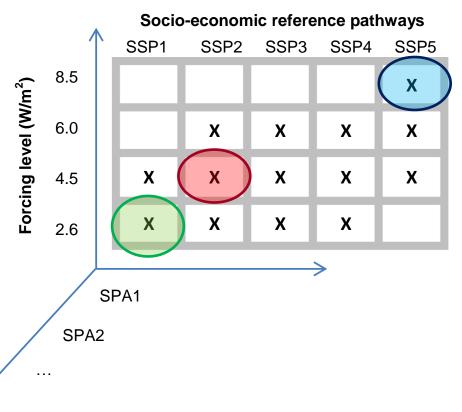
Extreme events "plausible and highly unlikely"

- Scenarios are not predictions
- Scenarios are stress tests for risk management purposes
 - These are not forecasts of what is likely to happen
 - These are hypothetical: Illustrate a 1-in-100 year event in a particular threat class
 - Used for 'what-if' studies

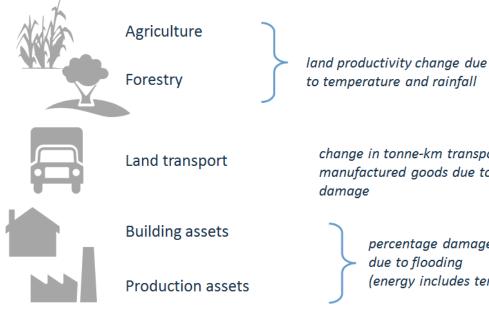
Development of sentiment scenario

Defining the sentiment scenarios

Representative Concentration Pathways (RCPs)


 Total radiative forcing from GHG causing climate change

Shared Socioeconomic Pathways (SSPs)


- Range of future socioeconomic, technology and emissions scenarios
- Reference scenarios upon which policy targets can be modeled

Shared Climate Policy Assumptions (SPAs)

- Climate change policy designs + how targets are achieved
- GHG emissions coverage, accession, cooperation

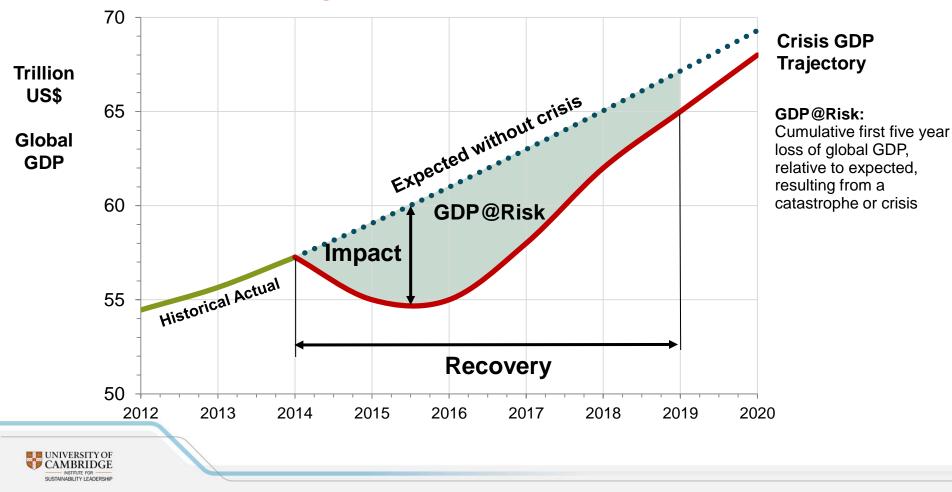
The process begins by defining the sectors to be considered

(including energy generation)

change in tonne-km transport for manufactured goods due to storm

> percentage damage due to flooding (energy includes temperature)

JNIVERSITY OF CLICTAINIADII ITV I CADEDCHI


Damage functions are used to estimate impacts on sectors at different temperature change values

A ani sultural ana dustinitu

	Agricultural productivity							
	Temperature change (C) relative to pre-industrial baseline							
				-			-	-
	0	0.5	1	2	3	4	5	6
Region								
North America	1	1.05	1	0.95	0.85	0.7	0.6	0.4
Central America	1	1.04	1.02	0.98	0.8	0.7	0.58	0.42
South America	1	1.03	1.01	0.97	0.79	0.69	0.57	0.41
Sub-Saharan Africa	1	1.06	1.01	0.96	0.86	0.71	0.61	0.41
Middle East	1	1.04	0.99	0.94	0.84	0.69	0.59	0.39
European Union	1	1.03	0.98	0.93	0.83	0.68	0.58	0.42
Southeast Asia	1	1.06	1.01	0.96	0.88	0.72	0.61	0.4
China	1	1.06	1.01	0.96	0.88	0.72	0.61	0.4
Russia	1	1.1	1.05	1	0.9	0.75	0.65	0.45
Australia and NZ	1	1.04	1.02	0.07	0.78	0.72	0.6	0.44

Estimating GDP@Risk

Scenario assumptions

Scenario: Two Degrees

World making good progress towards sustainability w/ rapid improvement to cleantech development

Regulations: Coordinated level of global cooperation for mitigation: global \$30/ton carbon tax imposed, increasing in future.

Market Reaction: Moderate shift in market sentiment due to uncertainties to future energy resources and structural change as energy consumption is reduced and divestment from fossil fuel takes place

Scenario: Baseline

Trends typical of recent decades continue with mild progress, if any, towards reducing resource and energy intensity

Regulations: Delays in global climate policy action with no carbon tax and fossil fuel demand remaining unchanged

Market Reaction: Negligible shift in market sentiments; expectations of future economic activities remain unchanged

Scenario: No Mitigation

Focus on rapid economic growth dependent on fossil fuel with little attention to climate change adaptation; no room for mitigation which lead to belief that global warming is accelerating past the point of no return

Regulations: Higher fixed investment for fossil fuel extraction and subsididies

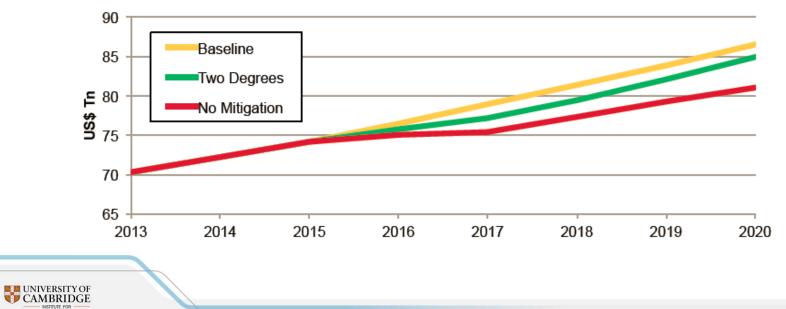
Market Reaction: Drastic shift in market sentiments due to large uncertainties regarding climate outlook and future economic activities

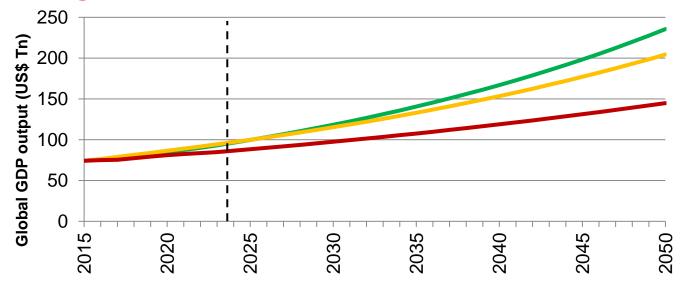
UNIVERSITY OF CAMBUTY FOR SUSTAINABULTY LEADERSHIP

Scenario assumptions

Scenario: Two Degrees	Scenario: Baseline	Scenario: No Mitigation	
 Regulatory assumptions: \$100/tonne CO₂ of carbon tax to reflect the strength of climate policies aimed at reducing greenhouse gases (GHG) emissions Carbon budgets set at 20% on existing reserves 80% more investments in low-carbon technologies No further investment (or subsidies) for fossil fuel extractions 	 Regulatory assumptions: No carbon or oil tax World fossil fuel energy supply/production remains unchanged Fossil fuel-dominant energy investments remain unchanged No technological advances to renewable energy sources 	 Regulatory assumptions: No carbon or oil tax 50% increase in world fixed investment for energy extraction 	

Sentiment scenario summary table


Matrix Axis	Parameters	Two Degrees	Baseline	No Mitigation
Olimete impecto	Future temperature increase	Low	Moderate	High
Climate impacts	Extreme weather events	Low	Moderate	High
Socio- economic development	Population Growth	Low	Moderate	Low
	Resource consumption	Low	Moderate	High
	Fossil fuel demand	Low	Moderate	High
	Fossil fuel price	High	Low	High
Environmental Policies	Green technology	High	Moderate	Low
	Climate policies	High	Moderate	Low


Global macroeconomic impacts

SUSTAINABILITY LEADERSHIP

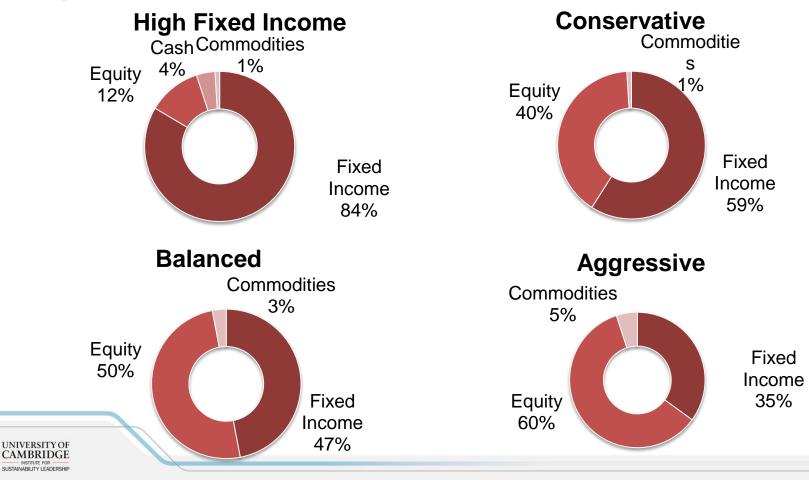
Summary of Effects of Sentiment Scenarios					
	Baseline (Reference)	Two Degrees	No Mitigation		
Macroeconomic Losses					
Min. GDP growth rate	3%	0.3%	-0.1%		
Global recession duration	Nil	Nil	3 Qtrs		
GDP@Risk (US\$Tr)	-	8.9	19.1		
GDP@Risk (%)	-	2.2%	4.7%		

The long-term view

	Long Term Impact of Scenarios with Respect to Baseline to 2050 (GDP@Risk)					
Scenario	No Discount Rate	3.5% Discount Rate	6% Discount Rate			
Two Degrees	6.5%	4.5%	3.2%			
No Mitigation	-19%	-16%	-14%			

Aggregate vs. sectoral analysis

- Multiple portfolio structures considered
- Portfolio rebalancing to maintain correct proportions
- Sectoral impacts of particular relevance for equities
 - Uses physical impacts data for sectors and regions



Within model variation

Climate impacts	Countries	Asset classes	Economic Sectors		
Heat wave	United States	Fixed income	Health Care/Pharma	Energy / Oil and Gas	
Flooding	United Kingdom	- 10Y gov bonds	Technology (renewables)	Transport	
Storms	Germany	- 2Y gov bonds	Construction	Real Estate	
	Japan	Equities	Agriculture	Consumer Retail	
	China	Corporate bonds	Consumer Services	Basic Materials	
	Brazil	Commodities	Financials	Telecommunications	
			Industrials		

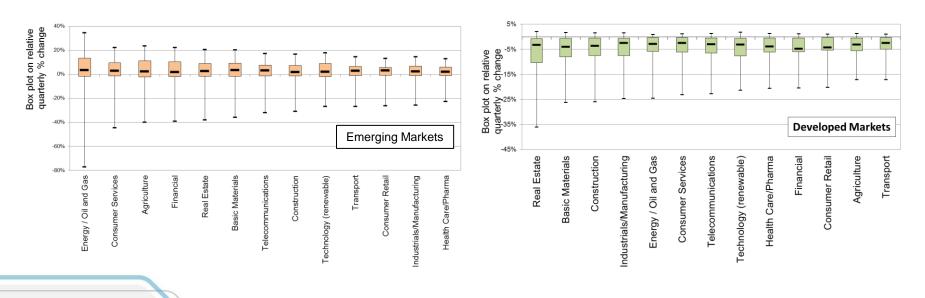
UNIVERSITY OF CAMBRIDGE INSTITUTE FOR SUSTAINABILITY LEADERSHIP

Four portfolio structures

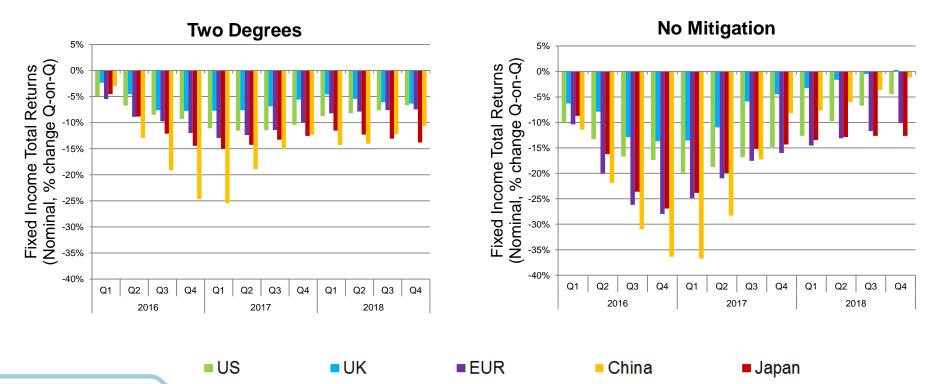
Impact on equity markets

40% 80% Equity Value (Nominal, % change Q-on-Q) Equity Value I, % change Q-on-Q) 60% 20% 40% 0% 20% -20% 0% -20% (Nominal, -40% -40% -60% -60% -80% -80% Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Yr1 Yr2 Yr3 Yr1 Yr2 Yr3

Two Degrees


No Mitigation

US: W5000 UK: FTSE 100 EUR: DAX China: SSE Japan: N225 Brazil: BVSP


Impact by sector

Impact by sector, No Mitigation: emerging vs. developed markets

UNIVERSITY OF CAMBRIDGE

Impact on fixed income

UNIVERSITY OF CAMBRIDGE INSTITUTE FOR SUSTAINABILITY LEADERSHIP

"Unhedgeable Risk"

Summary of portfolio performance (short-term impact)

Portfolio Structure	Baseline	Two Degrees	No Mitigation
High Fixed Income	+0%	-10%	-23%
Conservative	+1%	-11%	-36%
Balanced	+1%	-11%	-40%
Aggressive	+1%	-11%	-45%

Summary of portfolio performance (long-term impact after 5 years)

Portfolio Structure	Baseline	Two Degrees	No Mitigation
High Fixed Income	+4%	-3%	-4%
Conservative	+12%	+9%	-26%
Balanced	+16%	+17%	-30%
Aggressive	+21%	+25%	-45%

Conclusions

- 49% of climate related sentiment risk is unsystematic and can be hedged through portfolio construction
- Even in the short run climate change is an aggregate risk driver that requires system-wide action to mitigate impacts
- Benefits of a sustainable economy lie in the reduction of risk in the short run and in superior returns in the long run

Recommendations for investors

- New tools for portfolio management dynamic perspective
- Value of scenario stress tests for sustainability-related risks on investments
- Though climate policy is for governments to decide, investors have an interest in maintaining financial stability:
 - Collaboration toward "orderly transition" of financial markets
 - Role in transition to low-carbon economy reduction (2°C portfolio)

Comparison with mercer study

Mercer study

ILG research

Similarities:

- Similar objective: elucidate the impact of climate change on returns across asset classes and industries, using a scenario-based approach
- Scenarios cover the next 35 years, and are built on similar components (emissions pathway and economic damages)

Differences:

- Sensitivity of industries to climate change risk uses same approach as for assets
- Models are based largely on expert elicitation of physical impacts
- Models the average annual return impact over the years 2015-2050
- Stricter separation of physical impacts and macroeconomic developments
- Scenarios as input parameters
- Models the short-run impact through shifts in investor sentiment