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Abstract6

We propose a generic workflow for the use of machine learning models to in-7

form decision making and to communicate modelling results with stakeholders. It8

involves three steps: (1) A comparative model evaluation, (2) a feature importance9

analysis and (3) statistical inference based on Shapley value decompositions. We10

discuss the different steps of the workflow in detail and demonstrate each by fore-11

casting changes in US unemployment one year ahead using the well-established12

FRED-MD dataset. We find that universal function approximators from the ma-13

chine learning literature, including gradient boosting and artificial neural networks,14

outperform more conventional linear models. This better performance is associated15

with greater flexibility, allowing the machine learning models to account for time-16

varying and nonlinear relationships in the data generating process. The Shapley17

value decomposition identifies economically meaningful nonlinearities learned by18

the models. Shapley regressions for statistical inference on machine learning mod-19

els enable us to assess and communicate variable importance akin to conventional20

econometric approaches. While we also explore high-dimensional models, our find-21

ings suggest that the best trade-off between interpretability and performance of the22

models is achieved when a small set of variables is selected by domain experts.23

1 Introduction24

Predictive machine learning models are increasingly being used at decision-making insti-25

tutions, such as central banks, governments and international institutions (Doerr et al.,26

2021). Major appeals of these models are that they often give more accurate predictions27

than conventional approaches and can handle high-dimensional data (Haldane, 2018).28

*Corresponding author. Disclaimer: The content and views presented in this article do not represent
the views of the Bank of England (BoE). Acknowledgement: Many thanks to David Bholat and Helena
Robertson for support of the project and helpful comments on the manuscript. Code: The code for
implementing and replicating the paper’s results can be found at [insert link].
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On the downside, many machine learning methods suffer from the black box cri-29

tique. It is not straightforward to assess the factors driving predictions and therefore30

to understand the relations between the inputs and output of the model. However, this31

understanding of a model is crucial, especially for decision making processes, for several32

reasons. First, both decision makers and their audiences naturally have a desire to un-33

derstand the inputs leading to decisions and legitimise them. Second, decision making34

processes often involve multiple models.1 The information derived from different models35

should be compatible leading to a coherent picture. The understanding of all models in-36

volved is needed for this. Third, models can ‘misfire’ for several reasons, for example by37

picking up spurious relations in the data. This often can only be detected and prevented38

if one has a good understanding of a model.39

Prediction models whose accuracy is a key motivation behind their deployment—40

which often holds for machine learning methods—should also help to inform the narrative41

approach behind any economic policy decision rather than providing mere black box42

predictions (George, 1999; Burgess et al., 2013; Independent Evaluation Office, 2015).43

Machine learning models also can provide a richer set of information compared to more44

conventional statistical models, like linear regression models. In particular, they can45

implicitly learn nonlinear functional forms and interaction from the data without the46

need to specify them a priori.47

In this paper, we lay out a multi-step workflow for the use of machine learning mod-48

els, which we deem suitable to inform decision making processes. It consists of three49

steps which can be directly applied to other contexts as well than those presented in50

the accompanying case study. First, a model comparison is conducted between conven-51

tional statistical methods and machine learning models to provide prima facie evidence52

of whether a machine learning approach is likely to deliver benefits. If the primary objec-53

tive is model accuracy, e.g. for forecasting, this would be a model horse race to minimise54

the forecasting error. Second, the machine learning predictions are decomposed into the55

contributions of the individual model variables. This allows us to uncover the relative56

importance of variables and understand the functional forms learned by the different57

machine learning models. By a comparison across models, one can gauge how robust58

feature decompositions are to the choice of the algorithm. Third, statistical inference is59

conducted to understand which variables make a statistically significant contribution to60

the accuracy of a model, providing a level of confidence for our interpretations and any61

narrative attached to them. This inference uses a parametric regression analysis, allowing62

for a standardised communication of statistical model results. A rich set of robustness63

checks provides guidance for frequently encountered challenges, especially when using64

machine learning. These include variable selection in a high-dimensional setting, model65

stability, and computational requirements.66

Throughout the paper, we apply the proposed procedures to a macroeconomic case67

study, where we forecast changes in unemployment—an important input for fiscal and68

monetary policy decisions (Burgess et al., 2013). Along the steps of the workflow, we69

contrast the use of machine learning models with a simpler but less flexible linear model.70

1Without any stringent assumption on the data generating process, machine learning models can be
labelled “non-structural” describing correlations between inputs and targets. Other “structural” models
make richer assumptions about the data generating process. Comparing the two requires analyses of the
assumptions on the data generating process, estimation techniques and results.
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Most of the presented techniques generalise to other settings in a straightforward71

manner, such that this paper provides a one-stop reference for practitioners for the use72

of machine learning models in situations where the understanding and communication73

of model results is crucial. This is especially the case at policy institutions. Inevitably74

this ties to many technicalities. We discuss the most relevant ones in intuitive terms and75

provide references to the related literature for further guidance.76

There are several levels of communication involved in a data-driven decision process,77

from technical modelling experts performing the analysis, over communications to man-78

agement, up to the decision making bodies. The ability to communicate modelling results79

with varying levels of complexity is crucial in this setting. However, effective communica-80

tion is highly contextual. The technical knowledge and experience can vary greatly within81

decision making bodies and their audiences. Thus, there is no one-size-fits-all mapping82

between workflow outputs and target audiences. Instead we provide some broad guid-83

ance and suggestions on matching individual outputs with target audiences as follows.84

We layer target audiences by how close they are to the technical details of the analysis85

going from analysts, who perform the analysis, to management, who aggregate and filter86

information from different sources (e.g. different teams of analysts) and distil information87

for decision making bodies, and finally decision makers and their audiences. This gives88

three levels, where guidance is to be understood as a ‘smaller or equal’, meaning that89

if the target audience is the management, it also includes analysts, and if it is decision90

makers, it may serve for all. Labels for the the target audience are mostly attached to91

table and figure captions which summarise the outputs of our workflow.92

The present paper connects different fields, ranging from machine learning and model93

interpretability to statistical inference and economic forecasting. There is a growing lit-94

erature that suggests that machine learning methods can outperform more conventional95

models in economic prediction problems including forecasting. For example, machine96

learning methods have been shown to be better at predicting bond risk premia (Bianchi97

et al., 2019), forecasting macroeconomic variables such as unemployment and inflation98

(Sermpinis et al., 2014; Chen et al., 2019), recessions (Döpke et al., 2017), and financial99

crises (Bluwstein et al., 2020).2 However, other papers do not observe consistently im-100

proved performance by using machine learning, instead finding that it is state or horizon101

dependent (Kock and Teräsvirta, 2014). This mixed evidence validates our horse race as102

an important first step for the workflow.103

Predicting macroeconomic dynamics is challenging. Relationships between variables104

may not hold over time and shocks such as recessions or financial crises might lead to a105

breakdown of previously observed relationships (Ng and Wright, 2013; Elliott and Tim-106

mermann, 2008). In line with the literature, we suggest that it is the inherent nonlinearity107

of nonparametric models that allows them to learn and exploit complex relationships for108

prediction (Wang and Manning, 2013). Coulombe et al. (2019) show that this advantage109

of machine learning models to exploit nonlinearities in macroforecasting is enhanced at110

longer horizons. However, the nonlinear relationships learned are not directly observ-111

able, which has led to the aforementioned black box critique of these models as a major112

2In these problems, several variables are used to forecast the outcome variable. In the univariate
case, when only the lagged outcome is used for prediction, evidence suggests that statistical methods or
hybrid models combining statistical and machine learning approaches outperform pure machine learning
methods, on average (Makridakis et al., 2018a,b; Parmezan et al., 2019).
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challenge to their applicability to inform decisions.113

Approaches to interpretable machine learning come from different directions: epis-114

temic discussions about what it means for a model to be interpretable (Miller, 2019),115

technical approaches in machine learning research (Doshi-Velez and Kim, 2017), and116

methodology in econometrics and statistics (Chernozhukov et al., 2018). This paper117

primarily focuses on the latter two.118

Miller (2019) analyses the psychology of explanations and suggests that humans ex-119

pect explanations that are based on a limited number of causes rather than an exhaustive120

account of all factors—acknowledging that the simplification of the problem risks intro-121

ducing bias. Relatedly, Lipton (2016) argues that a high-dimensional linear model is not122

necessarily more interpretable than a compact artificial neural network that learns from123

only few features. Also, if the linear model is trained on abstract features, for instance,124

obtained by principal component analysis, its parameters may not provide an obvious125

economic interpretation.126

In the machine learning literature, approaches to interpretability usually focus on127

measuring how important input variables are for prediction. Variable attributions can128

be either global, by assessing the variable importance across the whole data set or local,129

by measuring the importance of the variables at the level of individual observations130

in the form of a decomposition. Such local attributions can always be summarised in a131

global variable importance measure by averaging local attributions across all observations.132

Popular global methods are permutation importance or Gini importance for tree-based133

models (Breiman, 2001). Popular local decomposition methods are LIME (Ribeiro et al.,134

2016), DeepLIFT (Shrikumar et al., 2017) and Shapley values (Štrumbelj and Kononenko,135

2010; Lundberg and Lee, 2017). Lundberg and Lee (2017) demonstrate that Shapley136

values offer a unified framework of LIME and DeepLIFT with appealing properties. Most137

importantly, Shapley values guarantee consistency, where a consistent measure of variable138

importance preserves the relative importance between variables across situations where139

such a ranking is imposed. We therefore focus on Shapley values when describing the140

workflow and presenting the case study. For illustrative purposes, we contrast the use of141

Shapley values with permutation importance.142

These global and local attribution methods are only descriptive—they explain the143

drivers of model predictions and performance, but they do not assess the predictors’ sta-144

tistical significance, i.e. how certain one can be that a variable is actually important to145

describe a specific outcome. We extend our interpretation of machine learning models146

for forecasting by statistically testing the predictors in a Shapley regression framework147

(Joseph, 2019). Shapley values and inference based on them is arguably the most gen-148

eral and rigorous approach to address the issues of machine learning interpretability and149

model communication. In this way, we close the gap between two traditional modelling150

approaches, the maximisation of predictive performance using ‘black box’ machine learn-151

ing methods and the application of statistical techniques to make inferences about the152

data generating process (Breiman et al., 2001).153

The remainder of this paper is structured as follows. Section 2 describes the proposed154

workflow. The data and the methodology used for the macroeconomic forecasting study155

used throughout this paper is introduced in Section 3. Section 4 presents the outputs of156

the workflow for our baseline scenario. This includes model performances, the analysis157

of feature importances and learned functional forms, and statistical inference. Section 5158
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discusses a rich set of robustness checks for varying different choices within the baseline159

scenario, and how they relate to different aspects of the proposed workflow. We conclude160

with a short discussion in Section 6. The technical appendix discusses the computation of161

model interpretability measures used in the case study, permutation importance, Shapley162

values and regressions.163

2 A machine learning workflow164

Our proposed workflow for the use of machine learning models is geared towards situations165

where model interpretability and the communication of modelling results is important.166

It consists of three steps, a model comparison, the assessment of variable importances167

and statistical inference on model components. The latter two steps are required due to168

the opaque nature of machine learning models.169

We keep the notation deliberately simple and general, with a more detailed and specific170

description used in the next section and the technical appendix. We say that a model171

f(x; θ) = ŷ takes inputs x, consisting of N variables indexed k and has fitted parameters172

θ. The model predicts the target variable y = ŷ + ε, with ε being the error term of which173

some form is minimised during model training (fitting), e.g. the squared error ε2. The174

Greek letter φk denotes variable components of f , i.e. f(x) = ∑Nk=0 φk(x), with φ0 being an175

intercept. Additionally, let us denote P as a performance metric to evaluate the goodness176

of a model. This may be the error training objective E but can be some other quality of177

a model we care about.178

2.1 Step 1: model comparison179

Machine learning methods require additional effort from the modeller compared to con-180

ventionally used econometric models (steps 2 and 3). Thus, the first step is to decide181

whether to proceed with any further analysis of the machine learning models by com-182

paring their performance to that of a benchmark model. The performance metric P can183

for example be the absolute forecasting error when predicting a continuous variables in184

a time series. However, P can also have a more complex forms. For example, it may185

be a function describing the trade-off between type one and two errors when predicting186

a binary variable, or when describing treatment heterogeneity in an experimental set-187

ting. Crucial questions regarding this horse race are what models (not) to compare, their188

stability, and what or how much data to use.189

2.1.1 Model selection190

The choice of models can be both specific and general. Specific in the sense that there are191

established models for certain tasks, which can serve as benchmark. General in the sense192

that it is usually not possible to know for machine learning models which models will193

predict best in a given situation (Fernández-Delgado et al., 2014). A reasonable start are194

popular general-purpose machine learning models, like random forests, gradient boosting,195

support vector machines and artificial neural networks (see Friedman et al. (2009) for196

an introduction to different models). Some authors include penalised regressions in the197

machine learning toolbox. These models arguably lie at the boundary between traditional198
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econometric and machine learning techniques. We do not include them in the latter, as199

they do not have the universal approximator property (see for example Cybenko (1989)).200

Universal function appoximation means that a model will, under the right circumstances,201

learn to approximate any functional form given enough training data. A further difference202

between the two classes of models is that the parameter vector θ is clearly defined for203

(penalised) regression models, while it generally undefined in terms of its shape and204

values for machine learning models. These are set during the cross-validation and training205

process, respectively.206

Some machine learning models may not be suited for a certain prediction task. For207

example, support vector machines have substantial computational costs when the dataset208

is large. Random forests can be memory intensive, especially when allowed to grow many209

large trees on a large dataset. Further, random forests are not suited for extrapolation210

beyond the training set, i.e. they cannot make predictions that exceed the observed values211

in the training set. On the other hand, random forests can deal well with high-dimensional212

data and a limited number of observations. Compared to other methods, they also deal213

well with extreme values and correlated variables.214

Artificial neural networks are both computation and data intensive. They have a215

wide range of architectures, some adapted to certain data types (see Goodfellow et al.216

(2016a) for an overview) but finding the appropriate architecture and other hyperparam-217

eters can be a challenging task. In contrast, support vector machines only have a few218

relevant hyperparameters and the random forest often performs well without tuning the219

hyperparameters at all.220

2.1.2 Model stability221

Another aspect to consider is model stability. A linear or support vector regression will222

always produce a deterministic optimal solution, while the training process of a random223

forest or artificial neural network is not deterministic, leading to different solutions when224

trained repeatedly on the same data with different random seeds. D’Amour et al. (2020)225

showed for complex neural networks that these different solutions can produce substan-226

tially different predictions on new data that differs from the distribution on which the227

model was trained. We may encounter this situation in economic forecasting when there228

is some unknown drift in the data generating process. Further, the hyperparameter search229

can introduce randomness into the training of any machine learning method. For complex230

models, such as gradient boosting or artificial neural networks, an exhaustive search for231

hyperparameters often is infeasible. In practise one only tests a few values for selected232

key hyperparameters. Alternatively, one employs a random search testing only a subset233

of all possible combinations in a larger hyperparameter space. Ideally, a machine learning234

model is insensitive to changes in its hyperparameters which makes a model comparison235

more robust and increases the replicability of the modelling.236

A remedy for low model stability is averaging several models trained based on different237

random seeds or slightly different training samples. However this comes at the cost of238

increased computational requirements—for training the ensemble of models, storing them239

and explaining their predictions.240
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2.1.3 Data & variables selection241

We assume that the dataset is structured, i.e. it can be represented well in a table.3 A242

modeller might be tempted to use all available variables as predictors. However, includ-243

ing more variables increases the likelihood that a model exploits spurious correlations244

that might not hold outside the training sample increasing model variance and lowering245

performance.246

Accordingly, one strand of the forecasting literature recommends to hand-pick a few247

predictors based on prior causal knowledge (Einhorn and Hogarth, 1985; Armstrong et al.,248

2015). Another important consideration is the number of observations per variable. For249

example, a standard least squares regression model cannot find a model if there are more250

variables than observations in the data. Penalised regression methods, like lasso and251

ridge can produce a solution in that case (Chetverikov et al., 2020). However, the rate of252

convergence of a nonparametric estimator depends on the dimension of the input space253

(Stone, 1982). Convergence rates for machine learning models can be low and the theory-254

based estimates of convergence rates is mostly not practical in real-world situations.4 The255

potential problem with slow convergence, especially in high-dimensional settings, is that256

a model may show high variance and thus perform poorly.257

On the other hand, some studies have reported successes in forecasting with large sets258

of variables (Chen et al., 2019; Medeiros et al., 2021)—but at the cost of interpretabil-259

ity: The more features are used in a model, the more difficult it is to understand and260

communicate the model independent of the type of model used.261

A common approach to increase the predictive performance and simplify the predic-262

tion model is to calibrate it on common factors that provide a lower-rank representation263

of the large set input variables (Stock and Watson, 2002; Kim and Swanson, 2018). How-264

ever, this approach also makes the interpretation of the resulting model challenging as265

the data-driven factors do not necessarily have a clear interpretation. In contrast, using266

a small hand-picked set of diverse predictors allows us to interpret their relationship with267

the response variable as learned by the prediction models. But this might lead to a de-268

crease in performance in some datasets. Giannone et al. (2017) use Bayesian modelling269

on a handful of data sets to show that selecting a small set of predictors from a large set270

of variables is often not feasible without trading off the performance of a linear model.271

Two other aspects that need to be considered are data revisions and a reporting lag.272

Macroeconomic data are often substantially revised (Runkle et al., 1998). Using the273

most recent vintage in pseudo out-of-sample forecasting removes the data uncertainty274

but resived data cannot be used when the forecasting model is used in real time to make275

predictions about the future. Furthermore, data is often only reported with a delay, e.g.276

GDP growth for this month might only be published the following month. In this case,277

a real-time forecast 12 months ahead on this variable is actually is a 13-month ahead278

forecast.279

Finally, in a forecasting setting, the modeller needs to determine how many obser-280

vations should be used to train the model. There is a trade-off between using all past281

3The complement to this is unstructured data such as text, images, video, etc. On these kind of data,
artificial neural networks generally perform better than other machine learning approaches, while data
always need to be brought into some potentially very high-dimensional tabular representation.

4They may, nevertheless, be estimated empirically if enough observations are available.
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data which improves the convergence of the model or only recent data, which avoids that282

the model is trained on observations that do not reflect the present and future due to283

structural shifts over time.284

2.2 Step 2: variable importance285

Variable importance measures usually answer one of two questions. How important is286

a variable for a model’s performance P? Or, how important is a variable to generate287

a predicted value ŷ? The two questions are related: the more accurate a model is, the288

closer ŷ is to y and thus the more similar the two metrics of importance will be.289

Measures related to P often are global, which means they provide a single number for290

each variable and model across the test set.5 This is practical for communication, as one291

obtains a simple variable ranking. Global measures, however, can obscure many nuances292

of a model. For instance, machine learning models are nonlinear (often non-monotonic)293

and, as such, a global measure risks oversimplification or producing inconclusive results294

when evaluated across differing domains of the input space.295

Local importance measures decompose individual predictions f(xt) of observation t296

into attributions of the individual features:297

f(xt) =
N

∑
k=0

φk(xt) , (1)

with φ0 being a model baseline value (intercept). Equation 1 defines an additive298

feature attribution. The advantage of feature importance measures of this form is that it299

provides more detailed information. For instance, comparing inputs xk with attributions300

φk provides the functional form of feature k learned by this model. Furthermore, any301

local measure can provide global information via aggregation.302

We employ two feature importance measures that are model-agnostic, unlike other303

approaches, such as Gini impurity (Kazemitabar et al., 2017; Friedman et al., 2009),304

that are only compatible with specific machine learning methods. We argue for the305

use of Shapley values (Shapley, 1953; Štrumbelj and Kononenko, 2010; Lundberg and306

Lee, 2017), which are local and of the form (1) and contrast them with permutation307

importance (Breiman, 2001; Fisher et al., 2019), a simple global measure. A concise308

technical description of both measures is provided in the technical appendix.309

The idea of these and other feature importance measures is to either remove the infor-310

mation of the variables of interest, or that of the other variables in the model, and then311

to observe how model outputs change. Permutation importance does this by randomly312

shuffeling the values a variables and to observe how much the performance of the model313

deteriorates over the test set. Shapley values, on the other hand, explain individual pre-314

dictions by measuring the contribution that a variable makes on top of others in the315

model. Shapley values have the advantage that they come with a set of appealing math-316

ematical properties inherited from their game theoretic origins (Young, 1985; Lundberg317

and Lee, 2017). In particular, Shapley values are the only variable attribution scheme318

5Variable importance can be evaluated on any fraction of the test set. Evaluation of the training set
has to be interpreted with caution because of overfitting. However, comparisons across training and test
sets can help to identify problems of model generalisation, such as overfitting.
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which provides accurate local, linear attributions (Equation 1), respects null contribu-319

tions, and is consistent. Consistency is a monotonicity property, that is, if a variable is320

more important in a model compared to another model, then it should also have a larger321

importance attributed to it. Most popular feature attribution metric do however violate322

consistency (Lundberg et al., 2020), which makes Shapley values the preferred importance323

measure, especially for local attribution. Computing Shapley values is computationally324

more demanding than comping permutation importance. However, there exist accurate325

approximations that substantially reduce the computation time of Shapley values which326

we will investigate as well.327

While the primary goal of a model comparison (Step 1 of the workflow) is to identify328

the most accurate model, it is also informative for the modeller to compare different329

machine learning methods in their variable importance. Strong disagreements in the330

importance or functional forms learned by the models can be an indication that the331

modelling needs to be refined. The better aligned the models are in how they use the332

predictive variables, the more confident the modeller can be that the models generalise333

well to the data generating process.334

The information derived from global and local feature importance measures is de-335

scriptive. They do not by themselves provide measures of certainty, i.e. an estimate on336

how certain one can be that a variable is actually important to describe or predict the337

outcome. This is the realm of statistical testing, e.g. in the form of hypothesis testing.338

2.3 Step 3: Shapley regressions339

Linear regression-based models are the workhorse in many applied settings as they allow340

for standardised and well-established communication. They achieve that by the means341

of regression coefficients and statistical tests that show whether these are different from342

zero. The canonical test against the null that there is no effect means that we test if there343

is a significant alignment between a variable of interest and the target (reject the null).344

We can ask the same about local attributions coming from the variables components φk345

in Equation 1 within a linear regression setting (Joseph, 2019),6346

yt = φS0 +
N

∑
k=1

φSk (xt)βSk + εS with H0
k ∶ {βSk ≤ 0 ∣xt ∈ Ω} (2)

Equation 2 is almost identical to a standard linear regression with two differences.7 First,347

the null hypothesisH0
k includes negative values. This is because Shapley values absorb the348

sign of a contribution, such that only significant positive values for βS mean alignment.349

Second, inference from Equation 2 is only valid within a region Ω, usually the test set.350

This is because nonlinear machine learning models may show alignment with the target351

only in bounded regions of the input space. Nonlinearity also means that we cannot352

summarise a variables importance by a single coefficient universally. We can, however,353

define something akin to a linear regression coefficient within a region Ω. Let sign be354

6This approach differs from the previous use of Shapley values in econometrics to analyse multi-
collinearity (Lipovetsky and Conklin, 2001).

7Eq. 2 is based on generated regressors (Pagan, 1984). The validity of inference and asymptotic
properties of estimating the βS are discussed in detail in (Joseph, 2019).
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the sign of the coefficients when regressing y on x, and let ψtk =
∣φSk (xt))∣
∑N

l=1 ∣φSl (xt)∣
be the share355

of absolute Shapley values of observation t attributed to variable k. The average share356

of Shapley values across all observations in Ω is denoted by ψ̄k = 1
∣Ω∣ ∑xt∈Ωψtk.8 Further,357

let (∗) indicate the confidence level with which we can reject H0
k according to Equation358

2, then we define the359

Shapley share coefficient: Γk ≡ sign ψ̄(∗)k ∈ [−1,1] . (3)

Shapley share coefficients can be communicated as commonly used regression coefficients360

in a well-known table form. The interpretation of Γk is also similar to that of a regression361

coefficient as it measures strength and confidence in alignment with the target variable.362

However, it cannot be interpreted as a marginal effect, unless the model is linear. In this363

case, Shapley share coefficients are aligned with the actual linear regression coefficients.364

3 Data and experimental set-up365

We describe the notation, data and experimental procedure for the macroeconomic fore-366

casting exercise which we use to demonstrate the proposed machine learning workflow.367

We first introduce the necessary notation. Let y and ŷ ∈ RT be the observed and368

predicted outcome, respectively, where T is the number of observations in the time series.369

The feature matrix9 is denoted by x ∈ RT×N , where N is the number of features in the370

dataset. The feature vector of observation t is denoted by xt. Generally, we use t to index371

the point in time of the observation and k to index features. The forecasting horizon in372

months is denoted by h. The forecasting horizon is a crucial aspect regarding the purpose373

of a forecast. One does not necessarily expect models to perform equally well or to pick up374

the same information across horizons. The default discussed in this paper is the one-year375

forecast (h = 12), sitting between short and medium-term projections.376

3.1 Data377

We use the FRED-MD macroeconomic database (McCracken and Ng, 2016) which con-378

tains monthly macroeconomic indicators for the US. Our vintage of the data goes from379

1959 to 2019. Our forecast target are changes in unemployment and we hand-pick nine380

variables as predictors in our baseline approach, each capturing a different macroeconomic381

channel. We use the stationarity transformations suggested by the authors of the dataset382

that include first differences (∆l(x) = xt − xt−l), log differences (∆llog(x)) and second383

order log differences (∆llog(xt)−∆llog(xt−l)). Given that we predict the yearly change of384

unemployment, we set transformation span l to 12 for the outcome and lagged outcome385

(predictor) variables. For the remaining predictors, we set l = 3 in our baseline set-up.386

Table I shows the variables, with the respective transformations and the series names in387

the original database. The augmented Dickey-Fuller test confirms that all transformed388

8Shapley values do not have a natural scale on which to represent them and they can change alongside
the region Ω being considered. This motivates the normalising denominator in the definition of ψt

k.
9Features or predictors in the machine learning literature correspond to independent variables, or just

variables. The observed, response, outcome or dependent variable is often referred to as the target.
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Variable Transformation Name in the FRED-MD database
Unemployment changes UNRATE
3-month treasury bill changes TB3MS
Real personal income log changes RPI
Industrial production log changes INDPRO
Consumption log changes DPCERA3M086SBEA
S&P 500 log changes S&P 500
Business loans second order log changes BUSLOANS
CPI second order log changes CPIAUCSL
Oil price second order log changes OILPRICEx
M2 Money second order log changes M2SL

Table I: Series used in our baseline forecasting experiment. The middle column shows
the transformations suggested in by the authors of the FRED-MD database, the right
column shows how the series are named in that database. Target audience: analysts.

series are stationary (p < 0.01). Different choices for handling the data, like choosing l as389

well as the aspects discussed in Section 2.1 are investigated in detail in Section 5.390

3.2 Models391

We test two types of models, a simple autoregressive model and several full-information392

models containing lags of the response variable and the features. The latter group is393

further split into linear regression models, with and without penalisation, and nonlinear394

machine learning models.395

The autoregressive model (AR) uses lagged values of the response variable as pre-396

dictors: ŷt = α +∑Ll=1 θlyt−l. We test AR models of lag lengths 1 ≤ L ≤ 12, where we chose397

L using the Akaike information criterion in the training set. We also test a simple AR1398

model by setting L = 1. The models fitted coefficients are given by θ ∈ RL. Forecasts399

over a horizon h are obtained iteratively from ŷt+h = α +∑Ll=1 θlŷt+h−l.400

The full-information models use the h-month lag of the outcome variable and the401

other features as independent variables: ŷt = f(yt−h, xt−h; θ), where f is any given pre-402

dictive model. For example, if f is a linear model, a horizon-h projection takes the form403

ŷt = α + θ0yt−h +∑Nk=1 θkxt−h,k + εt, with εt being the error term. To simplify notation in404

what follows, we include the lagged outcome in the feature matrix x. We test seven full405

information models: ordinary least squares regression, regularised regression with ridge406

and lasso penality, and four machine learning models: random forests (Breiman, 2001),407

gradient boosting (Friedman, 2000), support vector regression (Drucker et al., 1997),408

and artificial neural networks (Goodfellow et al., 2016b)). Table A-1 in the technical409

appendix provides details on the implementation of the models.410
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3.3 Experimental procedure411

We evaluate how all models predict l = 12 month changes in unemployment h = 12 months412

ahead in an pseudo out-of-sample setting with an expanding horizon. All methods are413

evaluated on the 359 data points of the forecasts between January 1990 and November414

2019 using an expanding window approach. We choose the absolute error as our perfor-415

mance metric. It is easy to interpret and less sensitive to outliers than the squared error.416

Accordingly, we pick the hyperparameter values that minimise absolute error.10
417

We fit, i.e. train, the AR models every month. The full information models are418

trained every 12 months such that each model makes 12 predictions before it is updated.419

Compared to updating the models every month, this reduces the computational cost420

considerably, while only minimally affecting model performance in normal times, and it421

does not affect the model comparison. However, one may refit a particular model more422

frequently during operation. Especially machine learning models can be quick in picking423

up different or new (economic) regimes as we will see below.424

As the models predict changes h months ahead, we have to create an initial gap425

between training and test set when making predictions to avoid a look-ahead bias. For a426

model trained on observations 1 . . . t, the earliest observation in the test set that provides427

a pseudo real-time h-month forecast is t+h. For observations t+ 1, . . . , t+h− 1, the time428

difference from the last observation in the training set t is less than one year.429

Most of the models we use can be affected by outliers. We therefore test how win-430

sorization of the features at the 1st and 99th percentile affects the predictive performance.431

We do not winsorise the response variable and the lagged response that is used as a432

feature.433

All machine learning models that we test have hyperparameters which need calibra-434

tion. We use two types of cross-validation for the hyperparatmer tuning. First, we employ435

ordinary five-fold cross-validation (see Chakraborty and Joseph (2017)), which does not436

consider temporal dependencies in the data, but randomly assigns the observations in437

the training set to five folds. Second, we use five-fold block cross-validation (Snijders,438

1988; Bergmeir and Beńıtez, 2012) where the five folds are assigned to five consecutive439

blocks. This approach respects the temporal dependency of the training and test data.440

More concretely, we use hv-block cross-validation (Racine, 2000), which additionally in-441

troduces a gap of 12 months between blocks of the training and test set. We employ a442

random search across 100 hyperparameter combinations and pick the hyperparameters443

that minimise the mean absolute error.444

As the hyperparameter optimisation is computationally expensive, we conduct it only445

every 36 months. Even during operation, it is unlikely that hyperparameters need to be446

updated with a higher frequency unless one expects dramatic model changes, e.g. due to447

a large change in the data generating process. Smaller changes will be reflected in the448

changes in the model parameters (e.g. the weights of the neural network) rather than449

hyperparameters (e.g. the architecture of the neural network).450

To increase the stability of the full information models, we train each model 30 times451

on different bootstrapped samples of the training set and average their predictions. This452

bootstrap aggregation approach is also referred to as bagging in the literature (Breiman,453

10Note however, that different models have different loss functions. Minimising these is not necessarily
equivalent to minimising the absolute error.
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1996). Each of the 30 models uses the same hyperparameters, which are calibrated on454

the full training set.455

To estimate how stable our models are, we repeat each experiment—including the456

training of the 30 boostrapped models every 12 month and the hyperparmaeter search457

every 36 months—10 times for all methods, each time with a different random seed.458

Sources of randomness that can lead to performance differences between these 10 iter-459

ations are the chosen hyperparameters,11 the random bootstrap samples, and random460

initialisations of the random forest, gradient boosting, and neural networks.461

4 Workflow output462

This section presents the results of our workflow when applying it to the baseline setting463

for forecasting changes in the US unemployment rate on a one-year horizon as described464

in the previous two sections. Not all results presented here are meant to be communicated465

during operation. Rather, we also present additional analyses that are only relevant for466

the technical expert that is developing a forecasting model or that are shown for illustra-467

tion purposes to help the reader better understand the technicalities of the workflow.468

4.1 Step 1: Model performance469

Table II summarises the empirical performance of the different forecasting models. For470

this table and the following analyses, we applied winsorisation to all models and used471

hv-block cross-validation for the hyperparameter search. Further, to obtain more stable472

predictions, we average the predictions of ten models each trained with a different random473

seed. In the table, the models are ordered by decreasing mean absolute error over the474

whole test period between 1990 and 2019.475

The table also breaks down the performance in three periods: the 1990s and the476

periods before and after the global financial crisis (GFC, September 2008). The best477

model in the individual periods is highlighted in bold. We statistically compare the error478

of the best model in each period, against all other models using a Diebold-Mariano test.12
479

All machine learning models outperform the linear models on the whole sample. In480

the 1990s and the periods before the global financial crisis, the difference in performance481

between the models is rather small compared to the period after the crisis. This is482

indicative that machine learning models may be particularly suited for detecting regime483

shifts or the modelling of nonlinearities, both aspects we will investigate in more detail.484

The simple AR1 models performs better than the AR12 model and the linear full-485

information models. Ridge and lasso regression perform very similar, both outperforming486

the OLS regression. In the following analyses we will only consider one AR model, the487

AR1, and will focus on one regression model, the ridge regression.488

11Both the randomly selected hyperparameter combinations and the random assignments to folds when
using k-fold cross-validation (folds in hv-block cross-validation are not randomly assigned) can induce
randomness.

12The horizon of the Diebold-Mariano test is set to 1 for all tests. Note however, that the horizon
of the AR models is 12 so that the p-values for this comparison are biased. Setting the horizon of the
Diebold-Mariano test to 12, we do not observe significant differences between the RMSE of the random
forest and AR.
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Time period 01/1990– 01/1990– 01/2000– 09/2008–
11/2019 12/1999 08/2008 11/2019

Gradient boosting 0.559 - 0.460 - 0.466 - 0.718 (0.353)
SVR 0.565 (0.323) 0.470 (0.328) 0.489 (0.219) 0.709 -
Forest 0.581 (0.018) 0.472 (0.240) 0.471 (0.413) 0.762 (0.005)
Neural network 0.589 (0.009) 0.468 (0.336) 0.503 (0.070) 0.762 (0.001)
AR1 0.608 (0.063) 0.472 (0.382) 0.503 (0.216) 0.811 (0.064)
AR12 0.626 (0.001) 0.543 (0.011) 0.482 (0.356) 0.810 (0.001)
Lasso regression 0.637 (0.000) 0.498 (0.061) 0.474 (0.378) 0.886 (0.000)
Ridge regression 0.639 (0.000) 0.497 (0.065) 0.481 (0.272) 0.886 (0.000)
OLS regression 0.648 (0.000) 0.516 (0.016) 0.508 (0.053) 0.872 (0.000)

Table II: Forecasting performance for the different prediction models in the baseline
set-up. The models are ordered by decreasing MAE on the whole sample. The best
performing model in each time period is highlighted in bold. The p-values in parentheses
indicate the statistical significance (one-sided) of the Diebold-Mariano test comparing
the best model in each column with the other models. Target audience: management to
decision makers.

Apart from the aggregated performance across the test period, it is informative to489

to look at the models’ individual predictions. Figure I (top panel) shows the observed490

response variable and the predictions of gradient boosting, ridge regression, and the AR1491

model. The bottom panel shows the prediction error. The vertical lines indicate the492

different time periods distinguished in Table II. All three models underestimate unem-493

ployment growth during the global financial crisis and overestimate it during the recovery.494

However, the gradient boosting model is least biased in those periods and forecasts the495

increase in unemployment earlier during the crisis. A similar observation can be made496

after the burst of the dot-com bubble in the early 2000s. Such a chart can be presented497

to the policy maker to convey the model’s performance in a clear and detailed way.498

4.2 Step 2: Feature importance499

We explain the predictions of the machine learning models and the linear regression as500

calibrated in our baseline set-up. Our focus is largely on explaining forecast predictions501

in a pseudo real-time setting. However, in some cases it can be instructive to explain the502

predictions of a model that was trained on observations across the whole time period.503

For that, we exploit the fact that we trained the models on 30 different bootstrapped504

samples across the whole time series. Each of these models can make predictions on505

those observations not in the bootstrapped training sample. In this way we obtain several506

predictions for each observation in the time series, which are then averaged. This out-of-507

bag analysis is subject to look-ahead bias, as we use future data to predict the past, but508

it allows us to evaluate a single model for the whole time series.509

We first analyse our two methods of model interpretation at a global level. Figure II510

compares Shapley shares ∣ΓS ∣ (left panel) with permutation importance (middle panel).511
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Figure I: Comparison of observed and predicted outcome. The top panel shows the
observed 1-year change in unemployment and the predictions by the gradient boosting
model, ridge regression, and the AR1. The bottom panel shows the error of these two
methods. Target audience: management or decision makers.

The variables are sorted by average Shapley shares of the four machine learning models.512

Vertical lines connect the lowest and highest share across models for each feature to513

highlight the disagreement between models.514

Shapley values and permutation importance do not agree in their ranking of feature515

importance. For instance, using a random forest model, the 3-month treasury bill seems516

to be a more important indicator according to permutation importance than according517

to Shapley calculations.518

The permutation importance is a measure of a feature’s influence on the accuracy of519

the model and is affected by how the relationship between outcome and features changes520

over time. In contrast, Shapley values reflect a variable’s influence on the predicted521

value, independent of that value’s accuracy. Arguably this measure of importance is522

more useful in a forecasting setting when the variable importance should be computed523

for data points for which the true outcome has not been observed yet, which means524

that permutation importance is not computable. The right panel of Figure II shows525

an altered measure of permutation importance. Instead of measuring the change in the526
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Figure II: Variable importance according to different measures. The left panel shows
the importance according to the Shapley shares ∣ΓS ∣ and the middle panel shows the
variable importance according to permutation importance. The right panel shows an
altered metric of permutation importance that measures the effect of permutation on the
predicted value rather than prediction error. Target audience for the left panel: decision
makers. Permutation importance is shown for illustrative purposes.

error due to permutations, we measure the change in the predicted value.13 We see that527

this importance measure is more closely aligned with Shapley values. Further, when we528

evaluate the error-based permutation importance metric using predictions based on the529

out-of-bag analysis, we find a strong alignment with Shapley values (not shown) as the530

relationship between variables is not affected by the changes between the training and531

test set.14
532

Overall, the different prediction models have a similar importance ranking of the533

features according to the Shapley share. There are, however some notable differences—534

especially the ridge regression model often differs substantially from the other models535

in the Shapley shares. Even the different machine learning models do not completely536

agree on the relative importance of features. For example, gradient boosting gives more537

importance to the lagged unemployment indicator than the other methods.538

While the computation of Shapley values is technically rather complex and difficult539

to communicate to a non-technical audience, we believe that the the intuition behind540

Shapley values as the contribution to the model’s predictions is easy to understand.541

Thus, a chart such as the left panel of Figure II—but only showing the best performing542

model—can be communicated to decision makers.543

This global analysis only conveys which variables are important across all observations544

in the test set. Local attributions will often be more useful in a pratical setting as they545

allow to assess individual, e.g. the latest, predictions.546

13This metric computes the mean absolute difference between the observed predicted values and the
predicted values after permuting feature k m times: 1

m ∑
m
i=1 ∣ŷi − ŷ

perm
i(k)

∣. The higher this difference, the

higher the importance of the feature k (see Lemaire et al. (2008) and Robnik-Šikonja and Kononenko
(2008) for similar approaches to measure variable importance).

14Comparing out-of-sample and out-of-bag measures allows to evaluate model drift and look-ahead
bias more generally.
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Figure III: Functional forms learned by different models for five features with the highest
average Shapley share. The lines shows a third degree polynomial fitted to the data. The
Shapley values are computed on the out-of-bag predictions and are therefore subject to
look-ahead bias. Target audience: analysts (comparison); decision makers (single model
if robust).

Local attributions also reveal the functional form learned by a model. To illustrate547

this, we consider the out-of-bag predictions, abstracting away from model drift which we548

discuss in a moment. Here, the most accurate models are the gradient boosting model549

(absolute error of 0.431) followed by the random forest (0.450), the SVR (0.452), the550

neural network (0.452), and ridge regression (0.584).15
551

15As in the forecasting setting, winsorisation is applied as it helps the performance of the SVR (see
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Figure III shows the functional forms that the machine learning models have learned552

from the most important features according to Shapley shares shown in Figure II (left553

panel). It depicts local Shapley values against the observed input values (horizontal axis)554

with rows show the variables and columns the different models. The approximate func-555

tional form learned by each model for each feature is traced out by a best-fit third-degree556

polynomial. Although the four machine learning methods use very different learning557

mechanisms and even do not agree perfectly on the global importance of features, the558

functional forms learned by all of them are highly consistent for all variables shown. This559

gives us confidence that the functions learned are meaningful and robust.560

For example, consider the S&P 500. The ridge regression learns a steep negative slope561

with higher stock market values being associated with lower unemployment one year562

ahead. This makes economic sense. However, we can make more nuanced statements563

when looking at the other models. There is an asymmetry between market increases and564

decreases. While large decreases suggest large increases in unemployment down the line,565

there is a saturation effect for high market valuations with only a small expected decrease566

in unemployment.567

For unemployment, all machine learning models learn a quadratic function. A high568

increase in unemployment makes future increases in unemployment less likely compared569

to a medium increase. For business loans we also observe a quadratic function, where570

very low and high loans leading to a positive predicted change in unemployment. In571

contrast, the linear model cannot model quadratic trends so that it is not surprising that572

the Shapley share of these two variables (Figure II, left panel) are substantially smaller573

according to the linear model compared to the machine learning models.574

Figure III serves several purposes. The functional forms learned from the data, al-575

though not causal, might provide new economic insights about the underlying processes.576

These can than be further investigated by, for example, using structural models. Further,577

by providing information about the inner workings of different models, these charts can578

be used as a diagnostic tool for the technical expert training and tuning the model. For579

instance, if the functional forms learned by a SVR are mostly linear whereas those of580

the other machine learning models are not, this might suggest a problem constraining581

the flexibility of the SVR. Finally, by evaluating the functional forms learned at different582

points in time, model drift or structural breaks can be detected.583

For example, we consider the out-of-bag predictions of the models trained up to three584

different points in time. Figure IV shows the functional form for the lagged unemployment585

change variable. The ridge regression model (left panel) trained up to the periods 2000586

and 2008 finds no predictive power for lagged unemployment. It is only after the onset of587

the GFC that the regression learns a positive relationship—an increase of unemployment588

increase the predicted increase unemployment one year ahead. However, this is simply589

reflective of the trend—the 1-year unemployment change was high for a prolonged period590

following the financial crisis: it was persistently greater or equal to one percentage point591

for 23 consecutive months (May 2008–March 2010). In contrast, the functional form of592

the gradient boosting model (right panel) is rather stable. Across the three time periods593

it learns a non-monotonic relationship where high absolute values in the unemployment594

Section 5), while it does not substantially affect the other models’ performance. In the out-of-bag
analysis, we use k-fold cross validation rather than blocked cross-validation as this generally improves
the performance.
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make future increases in unemployment less likely compared to a small changes. The scale595

of this learned functional form increased after the GFC in line with larger movements in596

the unemployment rate during this time.597

-1 0 1 2 3

-0
.6

-0
.4

-0
.2

0.
0

0.
2

0.
4

0.
6

Observed predictor values

S
ha

pl
ey

 v
al

ue
 o

f l
ag

ge
d 

U
ne

m
pl

oy
m

en
t r

at
e

Ridge regression

01/1990 - 12/1999
01/2000 - 08/2008
09/2008 - 11/2019

-1 0 1 2 3

-0
.6

-0
.4

-0
.2

0.
0

0.
2

0.
4

0.
6

Observed predictor values

S
ha

pl
ey

 v
al

ue
 o

f l
ag

ge
d 

U
ne

m
pl

oy
m

en
t r

at
e

Gradient boosting

Figure IV: Functional form of lagged unemployment change learned by ridge regression
(left panel) and gradient boosting (right panel) for three models trained up to different
points in time. The lines show third degree polynomials fitted to the data. Target
audience: analysts.

To better understand the non-monotonic function of lagged unemployment change598

learned by the gradient boosting model, we look into the role of recessions within the599

model.16 Figure V (left) again shows the functional form of lagged unemployment as600

learned by the gradient boosting model in the out-of-bag set-up. But now recession601

observations (also lagged by a year) in the input space are highlighted in red. Even though602

we did not include recessions explicitly as an indicator the model could learn from, these603

periods account for a large share of the downwards sloping part on the right-hand side.604

This makes economic sense, as recessions typically lead to increases in unemployment.605

We further elaborate on this observation by including a lagged recession dummy in606

our models and compute the Shapley-Taylor index (Agarwal et al., 2019) to decompose607

the predictions into the main effects from past unemployment, the recession dummy and608

their interaction.17
609

The Shapley values of this interaction as well as the main effect of lagged unemploy-610

ment is shown in the right panel of Figure V. The main effect of lagged unemployment611

still shows the inverted U-shaped form—even after controlling for interactions with all612

other variables. The Shapley values of the interaction show that during a recession there613

16We use the definition of recessions provided by the Federal Reserve Bank of St. Louis (Federal Reserve
Bank of St. Louis, 2020).

17We follow Joseph (2019) in his empirical approach and group all remaining variables into a single
“other” variable to reduce the computation time. We compute the Shapley Taylor expansion to the third
order (see Section 6) such that two-way interaction terms are unbiased.
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Figure V: Interaction between unemployment changes and recessions as learned by a gra-
dient boosting model. The left panel shows the functional form of lagged unemployment
changes when the model is trained on the baseline features without a recession dummy
(as in Figure IV). The right panel includes the Shapley values of the interactions when the
model was trained with a recession indicator. Target audience: analysts (comparison);
decision makers (recession effect only, right hand side)

is an additional strong negative effect of lagged unemployment on the prediction for larger614

values (red).615

While including the recession indicator improves the interpretation of the results and616

the interaction with unemployment has high Shapley values that contribute substantially617

to the prediction, the predictive accuracy of the gradient boosting model does not increase618

meaningfully. Adding the recession indicator, the forecast error only slightly decreases619

from 0.559 to 0.554. This suggests that the model learned the role of recession periods620

implicitly incorporating two different regimes, normal times and recessions.621

4.3 Step 3: Statistical inference with Shapley regressions622

Shapley value-based inference (Equation 2) allows us to communicate machine learning623

models analogously to a linear regression analysis. In Table III, we present the Shapley624

regression for the full out-of-sample forecasting period between 1990 and 2019 based on625

the predictions of the gradient boosting model. For illustrative purposes, the table also626

shows the Shapely regression for the ridge regression.627

As mentioned above, the coefficients βS measure the alignment of a variable with the628

target. Values close to one indicate perfect alignment and convergence of the learning629

process. Values larger than one indicate that a model underestimates the effect of a630

variable on the outcome. And the opposite is the case for values smaller than one. This631

can intuitively be understood as the model hyperplane of the Shapley regression either632

tilting more towards a Shapley component from a variable (underestimation, βSk > 1)633
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Gradient boosting Ridge regression
βS p-value ΓS βS p-value ΓS

Forecasting

Industrial production 1.132 0.000 -0.217*** 2.280 0.000 -0.185***
S&P 500 0.942 0.000 -0.191*** 0.907 0.000 -0.317***
Consumption 1.103 0.000 -0.177*** 0.966 0.012 -0.173**
Unemployment 1.443 0.000 +0.175*** 9.789 0.000 +0.031***
Business loans 3.086 0.000 -0.066*** 5.615 0.006 -0.035***
3-month treasury bill 4.273 0.000 -0.062*** -6.816 1.000 -0.042
Personal income -0.394 0.682 +0.04 -0.658 0.870 +0.138
Oil price 0.298 0.387 -0.035 -2.256 0.973 -0.055
CPI 0.272 0.438 +0.021 -4.294 0.875 +0.014
M2 Money -8.468 1.000 -0.016 -18.545 0.994 -0.009

Table III: Shapley regression of gradient boosting mode (left) and the ridge regression
(right) for the forecasting predictions between 1990–2019. Significance levels: ∗p<0.1;
∗∗p<0.05; ∗∗∗p<0.01. Target audience: analysts (comparison); decision maker (left hand
side).

or away from it (overestimation, βSk < 1). Significance decreases as the βSk approaches zero.634

635

Variables with higher Shapley shares ∣ΓS ∣ (same as in Figure II) tend to have lower636

p-values. This is intuitive, demonstrating that the model learns to rely more on features637

that are important for predicting the target variable. However this does not hold by638

construction, especially not in a forecasting setting where the relationships between vari-639

ables changes over time, any statistical significance may disappear in the test set—even640

for features with high Shapley shares.641

One more variables is statistically significant for the gradient boosting method than642

for the linear model. This is expected given the greater flexibility of machine learning643

models. It also provides further evidence of how non-parametric methods, like gradient644

boosting forests, exploit nonlinear relationships that linear regression cannot account for645

(as in Figure III).646

A Shapley regression table can provide meaningful insights for decision makers that647

are acquainted with standard statistical inference for regression. Further, it can help the648

technical expert to refine the model, for example by removing variables with negative649

coefficients or adjust the period of analysis until the coefficients align better with the650

target.651

5 Robustness652

We consider a wide array of alternative choices made during our baseline analysis and how653

these affect the outputs from the first two steps of our workflow, model performance and654
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Shapley feature importance.18 We first propose and run a set of analyses that vary key655

parameters of our experimental set-up to test whether our results that machine learning656

models outperform linear models is robust. Next, we replicate our results using real-time657

data and show how our workflow can be applied to substantially larger sets of predictors.658

Finally, we investigate the robustness of the Shapley values discussing computationally659

cheap approximations.660

5.1 Experimental set-up661

In our main analysis we used a bagging ensemble of 30 models for each of the full-662

information methods. We show in Figure A-1 (appendix) that only the gradient boosting663

model and the neural network improve using bagging. The figure shows the mean absolute664

error across the 10 iterations (based on different seeds) as a function of the bagging665

ensemble size. The confidence intervals (± 1.96 standard errors of the mean) of the666

gradient boosting and the neural network decrease visibly when increasing the size of the667

bagging ensembles, suggesting that bagging makes these models more stable and thus668

less sensitive to the random seed. In the following, we use bagging only for these two669

methods to save computation time.670

Further, we used blocked cross-validation for the hyperparameter search and have671

averaged the predictions of ten models, each trained on a different random seed. Figure672

VI (left panel) investigates the impact of these choices on model performance. It shows673

the mean absolute error (MAE) across the whole test period between 1990 and 2019 and674

conveys several findings.675

First, the machine learning models, especially the neural network and the SVR show676

a substantial variance in performance (smaller transparent dots) for the ten different677

iterations based on different random seeds. Averaging the predictions across these iter-678

ations (bigger non-transparent points) tends to produce more accurate predictions than679

the average individual model. This variance in the error across the ten iterations reflects680

substantial differences in the predictions on individual data points.681

To investigate this further we measure, for each observation in the test set, the range682

of predicted values across the ten iterations. The right panel of Figure VI plots the683

distribution of this range across these observations. The ten models are very similar for684

the ridge regression with a mean range of 0.05 (90% percentile: P90 = 0.08). The random685

forest is less stable with a mean range of 0.14 (P90 =0.26) but a factor of two more stable686

than the neural network with a mean range of 0.27 (P90 =0.5). This is—given a mean687

absolute error of less than 0.6—a substantial variation in the the prediction of the models.688

In a practical forecasting setting, the modeller might decide to slightly trade off pre-689

dictive performance against model stability and choose, for example, the random forest690

over the SVR. We believe that the repeated training of the same model with different691

random seeds is crucial to get a sense of the stability of their performance. To stabilise692

the models and make them less susceptible to the random seeds we suggests averaging693

them.694

Second, the type of cross-validation employed in the hyperparameter search matters695

for the performance of some of the methods. The linear models, the random forest,696

18Investigating changes in statistical alignment of feature components (step 3 of the workflow) can be
interesting during practical applications, but does not add much value to the discussion here we believe.
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Figure VI: Robustness of predictions. The left panel shows the MAE of our main predic-
tion models. The small markers show the performance of the individual iterations, each
based on a different random seed. The larger markers show the average performance
across these ten iterations. For each model we test two types of hyperparameter searches
(k-fold vs. hv-block cross validation). The OLS does not have hyperparameters and is not
affected by this test. The right panel shows the variation in the predicted values across
the ten iterations. For each observation in the test period (1990–2019), we measure the
range of predicted values and show the distribution of this measure in the chart. Target
audience: analysts.

and the neural network do not differ markedly in their performance for the two types697

of cross-validation. However, for the gradient boosting model and the support vector698

regression we observe a substantially better performance when using the blocked cross-699

validation approach. Even rather small design factors such as the type of cross-validation700

can change the conclusion about which model performs best. The fact that this and other701

factors (see below) affect the performance of the models in different ways suggests that702

the modeller should conduct a extensive set of experiments before identifying the best703

prediction model, and also assure its stability.704

We next alter several parameters with respect to our baseline set-up. The results are705

shown in Table IV with the best model in each row highlighted in bold.706

Prediction horizon. In the baseline set-up, we have predicted unemployment changes707

h = 12 months ahead. Here, we alter the prediction horizon between 1 and 36 months.708

We observe that the AR1 models competes well with the full information models at709

prediction horizons 1, 3, and 6 months but falls behind when increasing the horizon.710

This is not surprising as the autocorrelation in the response variables decreases with711

increasing h. The table shows that the machine learning models can provide meaningful712

signals for the unemployment changes at longer horizons, even three years ahead. The713

good performance of the random forest is notable: For all horizons different from 12, it714

performs as well as or better than the other models.715

Window size. In the baseline set-up, the training set grows over time (expanding win-716
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Gradient SVR Random Neural Ridge AR1

boosting forest Network regression

Prediction horizon h (lag between response and predictors in months)
1 0.20 0.19 0.17 0.18 0.18 0.17
3 0.28 0.28 0.27 0.27 0.27 0.27
6 0.41 0.41 0.39 0.42 0.43 0.41
12 (baseline) 0.56 0.57 0.58 0.59 0.64 0.61
24 0.68 0.67 0.62 0.69 0.73 0.79
36 0.64 0.63 0.61 0.72 0.72 0.80

Training set size (in months)
60 0.83 0.87 0.79 0.84 0.87 0.95
120 0.63 0.67 0.57 0.66 0.66 0.71
240 0.58 0.56 0.57 0.58 0.61 0.67
360 0.57 0.58 0.58 0.60 0.61 0.64
480 0.56 0.57 0.57 0.57 0.63 0.62
max (baseline) 0.56 0.57 0.58 0.59 0.64 0.61

Transformation span l (in months)
1 0.57 0.60 0.55 0.59 0.64 -
3 (baseline) 0.56 0.57 0.58 0.59 0.64 -
6 0.60 0.60 0.60 0.67 0.66 -
9 0.65 0.68 0.67 0.70 0.70 -
12 0.68 0.74 0.70 0.71 0.74 0.61

Winsorisation at 1% and 99%
Yes (baseline) 0.56 0.57 0.58 0.59 0.64 0.61
No 0.56 0.59 0.58 0.60 0.64 0.61

Table IV: Performance for different parameter specifications. The shown metric is mean
absolute error. The best model(s) in each row are highlighted in bold. Target audience:
management.

dow). This can potentially improve the performance as more observations may facilitate717

a better approximation of the data generating process. On the other hand, it may make718

the model sluggish and prevents quick adoption to structural changes. To differentiate719

between these two cases, we test sliding windows of 60 to 480 months. All methods per-720

form worst on the smallest horizons of 60, and only the random forest performs well on721

a sample of just 120 months. Gradient boosting consistently improves its performance722

with a growing sample size. This is not surprising for machine learning models, as they723

can learn different regimes for different time periods due to their flexibility and exploit724

them for prediction. For instance, different paths down a tree model, or different trees725

in a forest, are all different submodels. By contrast, the ridge regression, like all linear726

models, cannot adjust in this way and needs to fit the best hyperplane to the current727
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situation. This can explain why its performance declines for sample sizes larger than728

360.729

Transformation span. We use l = 3 months in the baseline, when calculating first730

differences, log differences and second order log differences of the predictors (see Table731

I). Testing lag lengths of 1, 6, 9, and 12 months, we find that shorter horizons of 1732

or 3 months generally leads to better performance than longer ones. This is useful733

from a practical point of view, as quarterly changes are commonly used for short-term734

economic projections.735

736

Winsorisation Winsorisation only helps the SVR and the neural network. It does not737

have a visible impact on the performance of the other models. As the response variable738

is not winsorised, there is by design, no effect on the performance of the AR1 model.739

Testing different training set sizes, transformation horizons, and winsorisation of pre-740

dictors are crucial to refine and improve the prediction models. The choice of the predic-741

tion horizons will be informed by the needs of the decision makers. But testing different742

horizons can help to assess the change in predictability of the response and by explaining743

predictions (see Section 4.2), one can detect differential signals provided by the predictors744

at different horizons.745

5.2 Real-time data746

Our pseudo out-of-sample forecasting approach does not reflect how forecasts are made747

in the real-world. When training and testing our models in Section 4.1, we used revised,748

macroeconomic data. In a practical setting, we have to rely on early vintages that749

are likely to be revised. We investigate whether the results change substantially when750

replicating the horse race using real-time data.751

There exist monthly vintages of the FRED-MD database19 starting from August 1999,752

each providing estimates for the indicators lagging one month behind.20
753

As before, we predict the change in unemployment one year head, this time for the754

period for which we can produce real-time forecasts (August 2000 – Novemember 2019).755

As the real-time data is delayed by a month, an actual one-year ahead forecast requires756

lagging the variables by 13 months. More formally, we use the data (features and re-757

sponse) of the vintage at time t, which contains the measurements up to date t − 1. We758

train the models with response yt′ and lagged predictors xt′−13, where t′ ≤ t − 1. To make759

a prediction one year ahead (ŷt+12), we use the latest feature values of the same vintage760

(xt−1) and compare the prediction against the revised response variable yrt+12. As in the761

previous experiments, we update the machine learning models every 12 months, winsorise762

the features and use hv-block cross-validation to calibrate the hyperparameters.763

19https://research.stlouisfed.org/econ/mccracken/fred-databases/
20The consumption variable is not included in the vintages before 2004. When using these vintages for

training we use the revised time series from our baseline data set. Further, the variables business loans
and real personal income have missing values in some of the vintages. Again, we replace these missing
values with the revised series. Some variables (e.g. real personal income and industrial production),
have been re-indexed for the different vintages. This does not affect our modelling as we use variable
transformations such that level differences do not matter.
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Table V compares the model performances using real-time (left two columns) and764

revised data (right column). As in our main empirical analysis (see Table II) the machine765

learning methods outperform the linear models, with gradient boosting being the best766

model. The p-values in parentheses indicate the statistical significance (one-sided) of767

the Diebold-Mariano test, estimating whether the gradient boosting model significantly768

outperforms the other models.769

The predictions based on the revised data are slightly more accurate than those based770

on the real-time data. This is driven by the fact that the real-time prediction is a 13-771

month forecast rather than a one-year ahead forecast because of the reporting lag of one772

month. The middle column of the table shows the performance when this reporting lag773

would not exist. Here the real-time data is used to make prediction 12 months ahead of774

the latest available data, which effectively is a forecast 11 months ahead. The performance775

differences between these real-time predictions and the predictions based on revised data776

are small and do not suggest that the models improve when using revised data. This777

is not surprising, given that the real-time and revised series most often only differ by a778

small degree, as shown in Figure A-2 in the appendix. We therefore do not investigate779

real-time data in detail but focus on the revised data in this study which allows us to780

investigate the models over a longer time period.781

Real-time Real-time Revised data
(13 month) (12 months) (12 months)

Gradient boosting 0.63 - 0.62 - 0.62 -
SVR 0.64 (0.33) 0.62 (0.48) 0.63 (0.37)
Forest 0.66 (0.04) 0.64 (0.02) 0.65 (0.02)
Neural network 0.67 (0.01) 0.64 (0.05) 0.66 (0.01)
AR1 0.72 (0.04) 0.69 (0.05) 0.69 (0.06)
Lasso regression 0.73 (0.00) 0.71 (0.00) 0.72 (0.00)
Ridge regression 0.75 (0.00) 0.72 (0.00) 0.73 (0.00)
Linear regression 0.75 (0.00) 0.72 (0.00) 0.73 (0.00)

Table V: Comparison of the forecasting performance when using real-time vs. revised
data. The performance metric is mean absolute error. The models are tested in the
period between August 2000 and November 2019. Target audience: analysts

5.3 Extending the set of features782

So far, we have used nine hand-picked key features (see Table I) to predict unemployment783

changes. However, the FRED-MD database (McCracken and Ng, 2016) offers a much784

richer set of variables—97 of which do not have any missing values between 1959 and785

2019. Can we improve the forecasting performance by exploiting all of these? We make786

the variables stationary by applying the transformations suggested by the authors of the787

database using a change horizon of l = 3 for all variables.788

Table VI compares the performance when using the key features (first column) versus789

all features (second column) in our baseline setting otherwise. Using all features, the790

performance of the best models, gradient boosting, as well as the OLS regression, declines,791
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whereas the performance of the other models improves or does not change. The random792

forest based on all features performs even slightly better than gradient boosting based793

on the key features. However, the Diebold-Mariano test them shows that the difference794

is not significant (p = 0.72, two-sided).795

An analysis of the Shapley values shows that the machine learning models do not796

learn a sparse model when trained on all features. For the three best models, random797

forest, SVR, and neural network, the Shapley share of the top 10 features respectively798

only account for 41%, 32%, and 34% of the variance in the predictions. To account799

for at least 80% we need to consider at least the top 39, 53, 47 features, respectively.800

The large number of variables also increases the disagreement between models. While801

the agreement in the Shapley share is high between the SVR and the neural network802

(correlation of 0.93), it is lower between the forest and the other two methods (0.69,803

0.70) (see Figure A-3 in the appendix). Further, unlike the models trained on the key804

features only (Figure III), the functional forms do not align well between methods when805

trained on all features. Figure A-4 in the appendix shows this for some of the key features.806

This is not surprising given the rather small number of observations in our data and807

the fact that non-parametric convergence often is slow when the number of features is808

high (Stone, 1982).809

Key features All features PCA1 PCA2 PCA3 PCA5 PCA7

Gradient boosting 0.56 0.58 0.67 0.53 0.52 0.54 0.57
SVR 0.57 0.57 0.61 0.52 0.52 0.55 0.59
Random forest 0.58 0.55 0.62 0.52 0.53 0.55 0.61
Neural network 0.59 0.57 0.69 0.52 0.53 0.55 0.55
Lasso 0.64 0.63 0.65 0.56 0.54 0.56 0.59
Ridge 0.64 0.58 0.65 0.56 0.54 0.56 0.58
OLS 0.65 0.80 0.65 0.56 0.54 0.56 0.59

Table VI: Comparison of the forecasting performance when using different input data.
The models are trained on the ten key features, all 97 features, or the k top components
of a principal component analysis (PCAk), which was calibrated on all features. The
performance metric is the mean absolute error. The best input data for each model
(rows) is highlighted in bold. Target audience: analysts.

5.3.1 Dimensionality reduction810

In the literature on economic forecasting, a standard approach to exploit the predictive811

power of many features is to calibrate a dimensionality reduction model (e.g. PCA) and812

train the prediction models on the most important components (Stock and Watson, 2002;813

Kim and Swanson, 2018). Aggregating redundant variables in the same component allows814

models to learn more effectively from a lower dimensional feature representation.815

We follow this approach and use a PCA to summarise all 97 features.21 Table VI shows816

the performance for the forecast error when the machine learning models are trained on817

21We calibrate the PCA model on the training set only and updated it every year as we do for the
machine learning models.
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Figure VII: Absolute loadings of the 97 features on the first (left panel) and second (right
panel) PCA component. The loadings shown are averages based on 30 PCA models
trained on the complete time series. Target audience: analysts.

2, 3, 5, and 7 components of the PCA. The best performance is achieved when only818

using two components with the SVR, neural network and random forest, all performing819

equally well. Comparing these three models to the gradient boosting model trained on820

the key features, the Diebold-Mariano test estimates the following p-values (two-sided)821

respectively: 0.054, 0.028, and 0.064. This suggests that using the PCA leads to a superior822

performance.823

A model based on just two component may seem easy to interpret at first sight.824

However, as shown in Figure VII, the loadings of the 97 variables on these components825

are not sparse. We show to which group a variable belongs to, where the groups have been826

defined by the authors of the data set (see also Ludvigson and Ng (2009)). Most variables827

with high loadings on the first component belong to the labour market and output and828

income variable groups but other variables have substantial loadings as well. Similarly,829

on the second component, the variables with the highest loadings belong to the interest830

rate and exchange rates group but other variables also contribute substantially.22. This831

suggests that the components do not have a simple economic interpretation.832

At the same time, using the PCA components also limits the insights we can draw833

from the analysis of Shapley values. The first two components only explain 24% and834

9% of the total variance in the data, respectively. Thus, most of the variation in the835

variables is not accounted for by the first components of the PCA. Further, making a836

machine learning model learn from only a few components will confine its ability to learn837

idiosyncratic functions of the individual features underlying that components. Rather,838

we expect that all functional forms of the variables loading on the same component will839

be similar.840

22It is important to note that the variables within the same group are not redundant. For example,
the median absolute correlation (after transformation) of all variables within the labour market group
and within the output and income group only is 0.29 and 0.43, respectively.
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Figure A-5 in the appendix supports this conjecture. It shows the Shapley values based841

on the random forest when trained on the top two PCA components. The features in the842

top row have a high loading on the first component and low loadings on the second. The843

opposite holds for the features in the second row. In each row, the features show highly844

similar functional forms. The functional form of the features lagged unemployment and845

S&P 500—both included the the set of key features—differ from those shown in Figure846

III. We do not observe a quadratic functional form for any of the 97 features when training847

the models on the PCA loadings, while two of the five most important features in our848

baseline experiment have such a functional form.849

While we observe a small performance improvement when using a PCA instead of the850

hand-picked key features, this comes at the cost of a more complex model that arguably851

provides less economic insights. Our results partially support the idea of an “illusion of852

sparsity” Giannone et al. (2017). The authors used linear models to show that making853

a model sparse by picking a small set of predictors from the larger set comes with the854

cost of an inferior predictive performance. We observe the same for our ridge regression855

for which the absolute error falls by 0.06 and 0.1, respectively when using all features856

directly or training the model on the PCA components.857

However, the performance gains from exploiting all variables are smaller for the ma-858

chine learning models. Further, our set of key features was selected based on economic859

considerations rather than empirical selection and is thus probably not the best possible860

subset. This suggest that the trade-off between sparsity and accuracy might be less pro-861

nounced when using nonlinear models because these are able to extract more information862

from sparse models.863

5.3.2 A richer lag structure864

Finally, we extend the number of features by adding more lags of the key variables. The865

minimum lag of 12 months, constitutes the prediction horizon. We add additional yearly866

lags from 24 to 72 months.23 Table VII shows the results of that experiment. While most867

models improve when adding more lags, the performance of the SVR and the neural868

network does not.869

The best performance is achieved by the gradient boosting model when trained on870

annual lags of the last four years. We take a closer look at this model. Figure A-6 in871

the appendix shows the functional forms for the different lags of the top features. The872

12-month lags of the variables contribute most to the predictions. The other lags mostly873

make only small contributions to the predictions. It is interesting to observe that the874

functional forms differ not only in their size between the lags of the same variables, but875

also in there shape. For example, comparing the lags of 12 months and 24 months, we876

observe contrary directions of the functional form for both industrial production and S&P877

500. Larger lags thus provide a form of correction to the main effects (first lag) explaining878

the somewhat better model performance. Whether this improvement in performance879

warrants the more complex interpretation of the resulting models depends on the practical880

situation at hand.881

23We also experimented with adding monthly lags (e.g. 12, 13,.., 23, 24) but this richer set of features
produced inferior results.
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Lags h (in months and steps of 12)
12 12–24 12–36 12–48 12–60 12–72

Gradient boosting 0.56 0.59 0.54 0.52 0.53 0.54
SVR 0.57 0.58 0.60 0.61 0.63 0.64
Forest 0.58 0.58 0.56 0.57 0.56 0.54
Neural network 0.59 0.62 0.61 0.60 0.59 0.59
Lasso 0.64 0.63 0.62 0.62 0.61 0.61
Ridge 0.64 0.64 0.63 0.60 0.59 0.60
OLS 0.65 0.65 0.68 0.70 0.75 0.78

Table VII: Performance comparison when using different lag structures. Lags are shown
in months and are incremented in steps of 12. For example, the lag structure 12–48
contains lags 12, 24, 36, 48 of our key features. The lag of 12 corresponds the baseline
experiment. The error metric is mean absolute error. The lag structure that leads to the
lowest error for each model (row) is highlighted in bold. Target audience: analysts.

5.4 Robustness of Shapley values882

We have shown in Figure VI that the performance of the prediction models can be quite883

sensitive to random seeds. He, we investigate whether random seeds also affect the global884

and local feature attributions and with that the economic interpretation.885

Figure A-7 in the appendix presents the Shapely shares of ten different gradient886

boosting models, each based on a different random seed. For each variable, there is lit-887

tle variance in the Shapley share between the models. The functional forms learned by888

the models is also rather robust. Figure A-8 shows the Shapely values of the four most889

important predictors based on the ten gradient boosting models with different random890

initialisations. There are only minor differences between the fitted third-degree polyno-891

mials. However, the Shapley values of single data points can differ substantially between892

the different model realisations. This is indicated by the vertical lines which show, for893

each observation, the range of Shapley values across the ten iterations. This shows the894

benefits of model averaging, which will lead to more stable estimates.895

Computing exact Shapley values is computationally expensive. It requires testing the896

predictions of all possible coalitions of features (see technical appendix). The number897

of coalitions grows exponentially with the number of features so that, in practice and898

as implemented by the kernel approach in the SHAP Python library (Lundberg and899

Lee, 2017), coalitions are sub-sampled to approximate the true Shapley values. When900

a coalition does not include a feature k, it is integrated out by using its values within901

a background dataset (see again technical appendix). Ideally, the background set is big902

and represents the data set well. However, the bigger the background sample, the more903

expensive the computation of the Shapely values becomes. In practice, the background904

sample is often summarised by using a random sub-sample of the training set, or by ap-905

proximating the training set with a few representative centroids using k-means clustering.906

In all experiments above, we have used the kernel method with 2000 coalitions, and907

25 centroids when estimating Shapely values for all machine learning models. Here, we908

investigate the robustness of the Shapley values when altering these two parameters. Fig-909
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ure A-9 in the appendix shows the Shapley values of industrial production,24 the most910

important predictor, for our most accurate models, gradient boosting and the SVR. We911

order all observations by increasing Shapley values. When varying the number of coali-912

tions (top row), the gradient boosting model is insensitive to this parameter. Sampling913

only 50 coalitions suffices for an accurate estimation of Shapely values. In contrast, we914

see some variation in Shapley values for the SVR if only 50 coalitions are sampled. There915

is almost no variation anymore if 100 coalitions are used.916

The middle row of Figure A-9 shows the effect of varying the size of the background917

sample. Here for both the gradient boosting model and the SVR, we only observe some918

errors in the estimates for a small background sample size of five.919

An alternative to the kernel-based computation of Shapley values is Tree SHAP (Lund-920

berg et al., 2020). It is not model-agnostic and can only be used on tree-based models921

such as gradient boosting and random forests. It does not estimate Shapley values by922

enumerating all possible coalitions of features but by only considering those that actu-923

ally are observed in the tree models, which makes this approach computationally much924

cheaper by construction.25 The bottom panel of Figure A-9 compares the Shapley values925

of industrial production based on the kernel method with those based on Tree SHAP for926

both tree-based models. Both methods produce very similar estimates of Shapley values927

for gradient boosting and the random forest.928

Table VIII shows the computation time required to obtain Shapley values for the 359929

data points of the whole test period between 1990–2019.26 With the baseline parameters930

of 2000 coalitions, and a background sample of 25, the computation time is about one931

minute for the gradient boosting model and 8 minutes for the SVR. But by reducing the932

coalitions to 100, the computation time for both methods drops substantially. Using Tree933

SHAP, Shapely values are estimated within two seconds.934

Background Coalitions Computation time (seconds)
Method sample Gradient Boosting SVR
Kernel 25 100 16.35 76.76
Kernel (baseline parameters) 25 2000 69.74 451.73
Kernel 100 2000 292.06 1772.17
Tree SHAP - - 1.70 -

Table VIII: Computation time (in seconds) when estimating the Shapely values of the
SVR and gradient boosting for the whole test period (1990–2019) containing 359 obser-
vations. Target audience: analysts.

This analysis suggest that, while the exact estimation of Shapley values can be compu-935

tationally prohibitive, they can be approximated accurately and efficiently. For instance,936

24The results are qualitatively similar for the others features.
25We set the parameter feature perturbation to interventional. In this way, Tree SHAP, like the kernel

method, ignores dependencies between features (see technical appendix). As another robustness check
we set this parameter to tree path dependent and thus consider correlations between features. Doing
this, the Shapley values of our tree models do not change markedly.

26We train a single model every year and do not use bagging. The computation was conducted on a
single kernel (not parallelised) of an AMD Ryzen 7 3700X.
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in our case study, the Shapley value computation for the full test period can be reduced937

to the order of one minute without noteworthy differences in attribution.938

6 Discussion939

This paper presents a workflow for using machine learning to inform decision making940

in situations where transparency and ease of communicating results are key. The three941

steps of the workflow are: a model comparison, a decomposition of predictions into feature942

contributions, and statistical inference on those contributions. The relative performance943

of machine learning models as compared to conventionally used ones can be used to decide944

if the further two steps of the workflow are needed to address the black box critique around945

mostly more opaque machine learning models.946

We applied the workflow to an economic forecasting exercise, predicting the change947

of the US unemployment rate one year ahead for the past 30 years.948

In the first step of this case study, we found a significantly better performance of ma-949

chine learning models compared to linear benchmarks. In the second step, we observed950

pronounced nonlinearities learned by the machine learning models that have clear eco-951

nomic interpretations. In the third step of the workflow, we use the Shapley regression952

framework to find that a larger number of variables is statistically significant when using953

machine learning models than for the linear benchmark, which demonstrates that non-954

linear machine learning models can extract and uncover a richer set of robust predictive955

relationships in the data.956

Machine learning methods are increasingly used in economic and social science re-957

search. However, most studies using machine learning focus on maximising predictive958

accuracy and accept the black box nature of the models. Research that does attempt959

statistical inference on machine learning models often uses controlled data, for exam-960

ple from randomised controls trials. Our study shows that the use of machine learning961

models and statistical inference can be combined to address real-world problems. But962

our study also revealed challenges of machine learning modelling on rather small data.963

First, we showed that the performance of some of the machine learning models is rather964

sensitive to random seeds. Second, the machine learning models differ in how they are af-965

fected by experimental parameters such as the type of hyperparameter search (e.g. k-fold966

cross-validation vs. blocked cross-validation) or winsorisation. These challenges can be967

addressed by model averaging to increase robustness, and by rigorous robustness checks,968

respectively. At the same time, our diverse set of machine learning methods, which differ969

significantly in their predictive performance, all learned highly similar functional forms970

from the data.971

When using a broad set of predictive variables instead of a small hand-picked selection,972

the predictive performance increased slightly. But as the nonlinear machine learning973

models do not learn a sparse model but use most features for prediction, interpreting974

their predictions becomes considerably more challenging. Further, we showed that the975

functional forms learned were less consistent across model families. When we trained976

the models on PCA components the interpretability was reduced as well, because the977

components do not have a clear interpretation. At the same time, being trained on978

just a few components limits the differential functional forms that the models can learn979
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from each underlying feature. Finally, the Shapley regression will suffer from a reduction980

of statistical power when being calibrated on a large number of features. Collectively981

these considerations suggest that, while our workflow is general and works in principle982

for problems with a large number of features, it will deliver more robust and easier to983

interpret results when based on a smaller set of features.984

More generally, Our case study is reminiscent of many real-world settings where one985

has a considerable number of features to learn from but a limited number of observa-986

tions. Our results suggest that a combination of expert domain knowledge to select987

key indicators and robust model properties may lead to the best trade-off between model988

performance and the interpretability of results—if such a trade-off exists in the first place.989

Many decision makers may not yet be familiar with machine learning methods. How-990

ever, we believe that their often better predictive accuracy and ability to detect richer,991

more nuanced signals in the data compared to conventional approach justify their use to992

inform decisions. With our workflow, model results can be communicated analogously to993

familiar and well-understood regression results.994

A general caveat to using the Shapley regression framework to communicate model995

results is that potentially complex and nonlinear models cannot be fully communicated996

by a single statistic, such as Shapley share coefficients. However, we believe that the997

combination of high predictive accuracy and the abilities to uncover unknown functional998

forms and to perform statistical inference on feature attributions well justifies the use of999

our machine learning workflow in decision making situations.1000
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Results Appendix1163

Number of models in bagging ensemble
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Figure A-1: Forecasting performance across 10 iterations as a function of the number of
models in the bagging ensemble. The horizontal lines show the mean performance across
all 10 iterations, the vertical bars show ± two standard errors around that mean. Target
audience: analysts.
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Figure A-2: Comparison of real-time and revised series after transformations that make
them stationary (see Table I). Target audience: analysts.
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Figure A-3: Shapley share when machine learning models are calibrated on all 97 features
of the dataset. The three shown models perform best in prediction when calibrated on
all features. Target audience: analysts.
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Figure A-4: Selected learned functional forms for the three best performing models when
using all 97 features. The lines show best-fit third-degree polynomials. Note that the
scale of the vertical axis differs between rows. Target audience: analysts.

42



-0.010 0.000 0.010

-0
.1

0
0.

00
0.

10
S

ha
pl

ey
 v

al
ue

s

Employees (total)
C = {0.19, 0.01}

-1 0 1 2 3

-0
.1
0

0.
00

0.
10

Unemployment rate
C = {0.14, 0.02}

-0.06 -0.02 0.02 0.06

-0
.1
0

0.
00

0.
10

Industrial Production
(Business equipment)

C = {0.17, 0.01}

-0.2 -0.1 0.0 0.1

-0
.1

0
0.

00
0.

10
S

ha
pl

ey
 v

al
ue

s

Observed values

S&P 500
C = {0.01, 0.10}

-0.05 0.00 0.05

-0
.1

0
0.

00
0.

10

Observed values

CPI (transport)
C = {0.02, 0.12}

-1 0 1 2 3

-0
.1

0
0.

00
0.

10

Observed values

5-year treasury rate
minus federal funds rate

C = {0.00, 0.25}

Figure A-5: Learned functional forms of selected features based on the predictions of a
random forest trained on the two first components of a PCA. The term C shows the
loadings of the features on the first and second principal component. The first row shows
features with a high loading on the first principal component and low loadings on the
second component. The second row shows features with a high loading on the second
principal component and low loadings on the first component. The lines show best-fit
third-degree polynomials. Target audience: analysts.
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Figure A-6: Learned functional forms of key predictors at different lags as learned by the
gradient boosting model. The results shown are based on a model trained on 40 features:
Four lags (12, 24, 36, 48 months) for each of the ten key features. Target audience:
analysts.
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Figure A-7: Robustness of the Shapley share. The figure shows the Shapley shares
according to ten different gradient boosting models, each trained with a different random
seed. Target audience: analysts.
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Figure A-8: Robustness of individual Shapley values. Each line shows the functional form
learned by one of 10 gradient boosting models, each trained with a different random seed.
The vertical lines show the maximum range in Shapley values across the 10 iterations for
each observations. Target audience: analysts. Target audience: analysts.
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Figure A-9: Accuracy of Shapley value computations. The top row compares Shapley
values estimated by the kernel method for different coalition sizes. The middle row shows
the Shapley values for different background sample sizes. The bottom row compares
Shapely values estimated by the kernel based method and the TreeShap method for
the two tree-based methods. From the top to bottom row, observations are ordered by
increasing Shapely values of the largest number of coalitions, the largest background
sample, and the kernel-based method, respectively. Target audience: analysts.
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Technical Appendix: Feature imortance measures1164

We present a concise description of the computation of the two feature importance measure1165

used in this paper, permutation importance and Shapley values. We also discuss computational1166

and conceptual challenges.1167

Permutation importance1168

The permutation importance of a variable measures the change of model performance when1169

the values of that variables are randomly scrambled, i.e. permuted. If a model has learnt a1170

strong dependency between the model outcome and a given variable, scrambling the value of the1171

variable leads to very different model predictions and thus affects performance. A variable k is1172

said to be important in a model, if the performance P after scrambling feature k is substantially1173

worse than when using the original values for k, i.e. Ppermk << P
baseline
k . The value of the1174

permutation performance Ppermk depends on the realisation of the permutation and variation in1175

its value can be large, particularly in small datasets. Therefore, it is recommended to average1176

P
perm
k over several random draws for more accurate estimation and to assess sampling variability.1177

Note that it is intractable in most applications to evaluate all M ! permutations in a test set1178

of size M . However, the average of multiple realisations of Ppermk will mostly converge quickly1179

with the number of permutation making permutation importance a computationally cheap way1180

to assess feature importance.27
1181

The following procedure estimates the permutation importance.1182

1. For each feature xk:1183

(a) Generate a permutation sample xpermk with the values of xk permuted across obser-1184

vations.1185

(b) Re-evaluate the test performance for xpermk , resulting in Ppermk .1186

(c) The permutation importance of xk is given by I(xk) = P
perm
k /P

k
baseline. Alterna-1187

tively, the difference Ppermk −P
baseline
k can be considered.1188

(d) Repeat and average over Q iterations and average Īk = 1/Q∑q I(xk).1189

2. If Ik is based on the ratio of errors Ppermk /P
baseline
k , consider the normalised quantity1190

Īk = (Ik − 1)/∑k(Ik − 1) ∈ (0,1).28
1191

This ease of use comes at some cost. For example, if two features contain similar information,1192

permuting either of them will not reflect the actual importance of this feature relative to all other1193

features. Only permuting both or excluding one would do so. This motivates our comparison1194

with Shapley values because they identify the individual marginal effect of a feature, accounting1195

for its interaction with all other features. More generally, permutation importance does not1196

come with the same analytical guarantees as Shapley values. Additionally, the computation of1197

permutation importance requires access to true outcome target values to evaluate performance.1198

In many situations, e.g. when working with models trained on sensitive or confidential data,1199

these may not be available.1200

27Given a large test set, bootstrap sub-samples may suffice.
28Note, Ik ≥ 1 in general. If not, there may be problems with model optimisation.

47



Shapley values1201

Shapley values originate from game theory as a general solution to the problem of attributing1202

a joint pay-off obtained in a cooperative game to the individual players of a coalition based on1203

their contribution to the game (Shapley, 1953). Štrumbelj and Kononenko (2010) introduced1204

the analogy between players in a cooperative game and variables in a general supervised model.1205

In the latter, variables jointly generate a prediction, the pay-off.1206

The Shapley values of a model offer a local decomposition of each model prediction29 xi1207

of the form given in Eq. 1, f(xi) = ∑
N
k=0 φk(xi). Here φSk (xi) is the Shapley value associated1208

with predictor k and φS0 an intercept, usually the model mean prediction. Shapley values come1209

with a host of appealing analytical properties which are inherited from their game theoretic1210

origins. Moreover, the decomposition in Eq. 1 does not need to refer to single variables but can1211

also include interactions or even higher-order terms of interest as introduced by Agarwal et al.1212

(2019). The below discussion for variable main effects also applies to interactions, but allows1213

to keep the notation simpler.1214

The Shapley attribution φSk (xi; f) for variable k in observation xi and model f in (1) is1215

given by1216

φSk (xi; f) = ∑

x′ ⊆C(x)∖{k}

∣x′∣!(n − ∣x′∣ − 1)!

n!
[f(xi∣x

′
∪ {k}) − f(xi∣x

′
)] , (4)

where C(x)∖{k} is the set of all possible variable combinations (coalitions) when excluding1217

variable k and ∣x′∣ denotes the number of variables included in that coalition. Equation 41218

is the weighted sum of marginal contributions of variable k to all possible variable coalitions1219

not including k itself. For example, assuming we have three variables (players) {A,B,C}, the1220

Shapley value of player C would be φSC(f) = 1/3[f({A,B,C}) − f({A,B})] + 1/6[f({A,C}) −1221

f({A})] + 1/6[f({B,C}) − f({B})] + 1/3[f({C}) − f({∅})].1222

There are challenges in evaluating (4), which may be called the no-free-lunch theorem of1223

Shapley values. One, the number of coalitions x′ to evaluate grows exponentially with the1224

number of variables. This means that an exhaustive enumeration is not feasible for already1225

moderate variable sets. Two, we need to evaluate conditional model predictions of the form1226

f(xi∣x
′
), i.e. models where only variables in x′ are ‘active’, and information from the other1227

variables is excluded.30 Under the assumption of feature independence, f(xi∣x
′
) can be evalu-1228

ated by conditional expectations over an informative background dataset b. That is, non-active1229

variables are integrating out numerically using b. Let ωx′ ≡ ∣x′∣!(n− ∣x′∣−1)!/n! be the combina-1230

torial weighting factor and x̄′ the set of variables among all not included in x′, then Eq. 4 can1231

be written as1232

φSk (xi; f) = ∑

x′ ⊆C(x)∖{k}
ωx′[Eb[f(xi)∣x′ ∪ {k}] −Eb[f(xi)∣x′]] , (5)

with Eb[f(xi)∣x′] ≡ ∫ f(xi)db(x̄′) =
1

∣b∣
∑

b

f(xi∣x̄′) . (6)

The intercept φS0 is determined by the background dataset b motivating its name,1233

φS0 = Eb[f(∅)] = Eb[f(x̄′ = b)] . (7)

29We label observations by i ∈ {, . . . ,M} here, which is more general than the time series notation used
in Section 3.

30This does not mean a different model which only uses variables in x′. Such a model would need to
be retrained and would generate different predictions, i.e. not be the model we want to evaluate.
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This means that the components φSk measure variable contributions relative to the mean model1234

prediction in b and that φS0 is a reference point. The choice of b will also affect the interpretation1235

of Shapley components. That is why b should be informative, e.g. as being representative of1236

the whole data generating process, or to represent a sub-group of a population, like the group1237

of untreated in an experimental setting.1238

We have not yet discussed the first problem above of computational complexity and the case1239

when features are not independent. These are briefly discussed with further references to the1240

literature.1241

1. Computational complexity: The sum over variable coalitions becomes impractical or even1242

infeasible for already relatively small sets of variables of about 8–10 depending on the1243

application. For larger set of variables some form of coalition sampling or variable selection1244

is needed. The Kernel SHAP algorithm Lundberg and Lee (2017) provides an efficient1245

sampling and evaluation of Shapley contributions in form of a weighted least square1246

calculation. We have shown in Section 5.4 that only 100 coalitions suffice to accurately1247

estimate Shapely values.1248

A variable selection method which provides an exact computation for a subset of features1249

is presented in Joseph (2019). Often one is not interested in the contributions of all1250

variables of a model, but only a subset, e.g. a treatment. In this case variables not of1251

interest can be grouped into a single other component, or sub-groups may serve as super-1252

variables until an exhaustive evaluation of Equation 4 is possible compatible with one’s1253

interest. We have used this approach in Section 4.2, when computing the Shapley values1254

of an interaction of features.1255

Additionally, the computation of Shapley components can be reduced by limiting the1256

size of the background b. A default option is the whole training dataset representing1257

all information the model has learned from. However, this can be impractical for large1258

datasets. Here either sub-samples or summary points, e.g. cluster centroids, can be used.1259

We have shown in Section 5.4 that even small background samples of 25 observations1260

suffice to accurately estimate Shapely values.1261

2. Feature dependence: The evaluation of conditional expectations (Equation 6) does not1262

consider dependencies between features, which can lead to feature value combinations1263

that are nonsensical and would not occur in the real world. We discuss three ways1264

to address this. First, one can estimate Shapley values of tree-based models for which1265

there exists an efficient algorithm that accounts for feature dependence (Lundberg et al.,1266

2020). By comparing Shapley values when respecting or ignoring feature dependence,1267

one can gauge the importance of feature dependencies. However, caution is warranted1268

when transferring the findings to other model families, e.g. artificial neural networks.1269

These may have learned different feature attributions for which the comparison of Shapley1270

components evaluated under the independence assumption is indicative.1271

Second, one can net out the effect of higher-order feature interactions using the Shapley-1272

Taylor index (Agarwal et al., 2019) to understand dependencies between features. This is1273

an expansion of a function over sets of active features including interactions of any order1274

of interest analogous to the Taylor expansion of differentiable functions. This means1275

that the importance of a feature is either its main effect, or the main effect in addition1276

to different interaction terms. Interaction terms also provide additional information as1277

shown in the analysis presented in the main text.1278

Third, the dependence structure within a variable set can be estimated (Aas et al., 2021).1279

While adding an extra potentially computationally costly step, this has the advantage of1280
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providing a single attribution for each feature which accounts for the dependence of the1281

data at least approximatively. It may, however, be argued that it is not necessarily clear1282

what a single component in a nonlinear model with feature dependence captures. This is1283

more intuitive for Shapley contributions of feature interactions, which capture the effect1284

of co-movements of two or more variables.1285

3. Expectation consistency: As shown by Sundararajan and Najmi (2020), attribution con-1286

sistency which, casually put, avoids logical contradictions in feature attribution, can be1287

violated when using conditional expectations for the computation of Equation 6,31 and1288

a single reference value is advocated for. However, this discards much of the potentially1289

rich information a model has learned, such as nonlinearities. A solution to this is provided1290

in Joseph (2019) by an additional condition when comparing different models against a1291

common background. The models’ intercepts φS0 over the background data b need to1292

coincide. This is fulfilled in many practical situations where models optimise the same1293

objective functions, like the mean squared error. Variations in φS0 are of concern as soon1294

as they reach the order of magnitude of the Shapley components φSk .1295

None of the above challenges is fatal for the application of Shapley values for model inter-1296

pretability as we have shown in detail. However, one has to be aware of the possible pitfalls and1297

consequences of approximations for model interpretations and any decisions based on them.1298

31See also Janzing et al. (2020).
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Method Implementation Fixed parameters Hyperparameter space

Random forest
scikit-learn n estimators: 500 max depth: [2, 3, 4, 5, 6, 8, 10, 20, 30]∗

RandomForestRegressor criterion: mae max features: [1, 3, 5, 7, 9, 11, 15, 30, 50]∗

Gradient boosting

lightgbm subsample: [0.05, .1, .2, .3, .4, .6, .6, .7, .8, .9, 1]
LGBMRegressor reg lambda: [0, 0.1, 1,10, 20, 50, 100]

reg alpha: [0, 0.1, 1, 2, 7, 10, 50, 100]
num leaves: [2,3,4, 5,10,20,40, 70, 100]
n estimators: [1, 3, 5, 10, 20, 30, 40, 50,

75, 100]∗

max depth: [1, 2, 3, 5, 8, 15]∗

colsample bytree: [0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 1]

SVR

scikit-learn C: [21, 21+1 4
9 , 21+2 4

9 ... 21+9 4
9 ]∗

SVR gamma: [2−7, 2−7+1 6
9 , 2−7+2 6

9 ... 2−7+9 6
9 ]∗

epsilon: [0.0001, 0.001, 0.005, 0.01, 0.05, 0.1,
0.2, 0.3, 0.4, 0.5]∗

Neural network

scikit-learn solver: lbfgs hidden layer sizes: [5, (5, 5), (5, 5, 5), 10, (10, 10), ...,
MLPRegressor max iter: 2000 (10, 10, 10), 15, (15,15), ...

25, (25, 25), (25, 25, 25)]
activation: [relu, tanh]
alpha: [10−5, 10−4, ...,103]

Lasso regression
scikit-learn alpha: [10−5, 10−5+1 9

99 , 10−5+2 9
99 , ..., 10−5+99 9

99 ]
Lasso

Ridge regression
scikit-learn alpha: [10−5, 10−5+1 9

99 , 10−5+2 9
99 , ..., 10−5+99 9

99 ]
Ridge

OLS regression
scikit-learn

LinearRegression

Table A-1: Implementation details on the prediction models. The second column shows the Python package and the respective
name of the machine learning method. The third column shows parameters that we set to a different value than the detault. The
fourth column shows the hyperparameter space.
∗We initially used a large parameter space but have refined it to these values without sacrificing performance.
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