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Abstract

We propose a generic workflow for the use of machine learning models to inform decision making and to 
communicate modelling results with stakeholders. It involves three steps: (1) a comparative model 
evaluation, (2) a feature importance analysis and (3) statistical inference based on Shapley value 
decompositions. We discuss the different steps of the workflow in detail and demonstrate each by 
forecasting changes in US unemployment one year ahead using the well-established FRED-MD dataset. We 
find that universal function approximators from the machine learning literature, including gradient 
boosting and artificial neural networks, outperform more conventional linear models. This better 
performance is associated with greater flexibility, allowing the machine learning models to account for 
time-varying and nonlinear relationships in the data generating process. The Shapley value decomposition 
identifies economically meaningful nonlinearities learned by the models. Shapley regressions for statistical 
inference on machine learning models enable us to assess and communicate variable importance akin to 
conventional econometric approaches. While we also explore high-dimensional models, our findings 
suggest that the best trade-off between interpretability and performance of the models is achieved when a 
small set of variables is selected by domain experts.
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1 Introduction

Predictive machine learning models are increasingly being used at decision-making insti-
tutions, such as central banks, governments and international institutions (Doerr et al.,
2021). Major appeals of these models are that they often give more accurate predictions
than conventional approaches and can handle high-dimensional data (Haldane, 2018).

On the downside, many machine learning methods suffer from the black box cri-
tique. It is not straightforward to assess the factors driving predictions and therefore
to understand the relations between the inputs and output of the model. However, this
understanding of a model is crucial, especially for decision making processes, for several
reasons. First, both decision makers and their audiences naturally have a desire to un-
derstand the inputs leading to decisions and legitimise them. Second, decision making
processes often involve multiple models.1 The information derived from different models
should be compatible leading to a coherent picture. The understanding of all models in-
volved is needed for this. Third, models can ‘misfire’ for several reasons, for example by
picking up spurious relations in the data. This often can only be detected and prevented
if one has a good understanding of a model.

Prediction models whose accuracy is a key motivation behind their deployment—
which often holds for machine learning methods—should also help to inform the narrative
approach behind any economic policy decision rather than providing mere black box
predictions (George, 1999; Burgess et al., 2013; Independent Evaluation Office, 2015).
Machine learning models also can provide a richer set of information compared to more
conventional statistical models, like linear regression models. In particular, they can
implicitly learn nonlinear functional forms and interaction from the data without the
need to specify them a priori.

In this paper, we lay out a multi-step workflow for the use of machine learning mod-
els, which we deem suitable to inform decision making processes. It consists of three
steps which can be directly applied to other contexts as well than those presented in
the accompanying case study. First, a model comparison is conducted between conven-
tional statistical methods and machine learning models to provide prima facie evidence
of whether a machine learning approach is likely to deliver benefits. If the primary objec-
tive is model accuracy, e.g. for forecasting, this would be a model horse race to minimise
the forecasting error. Second, the machine learning predictions are decomposed into the
contributions of the individual model variables. This allows us to uncover the relative
importance of variables and understand the functional forms learned by the different
machine learning models. By a comparison across models, one can gauge how robust
feature decompositions are to the choice of the algorithm. Third, statistical inference is
conducted to understand which variables make a statistically significant contribution to
the accuracy of a model, providing a level of confidence for our interpretations and any
narrative attached to them. This inference uses a parametric regression analysis, allowing
for a standardised communication of statistical model results. A rich set of robustness
checks provides guidance for frequently encountered challenges, especially when using

1Without any stringent assumption on the data generating process, machine learning models can be
labelled “non-structural” describing correlations between inputs and targets. Other “structural” models
make richer assumptions about the data generating process. Comparing the two requires analyses of the
assumptions on the data generating process, estimation techniques and results.
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machine learning. These include variable selection in a high-dimensional setting, model
stability, and computational requirements.

Throughout the paper, we apply the proposed procedures to a macroeconomic case
study, where we forecast changes in unemployment—an important input for fiscal and
monetary policy decisions (Burgess et al., 2013). Along the steps of the workflow, we
contrast the use of machine learning models with a simpler but less flexible linear model.

Most of the presented techniques generalise to other settings in a straightforward
manner, such that this paper provides a one-stop reference for practitioners for the use
of machine learning models in situations where the understanding and communication
of model results is crucial. This is especially the case at policy institutions. Inevitably
this ties to many technicalities. We discuss the most relevant ones in intuitive terms and
provide references to the related literature for further guidance.

There are several levels of communication involved in a data-driven decision process,
from technical modelling experts performing the analysis, over communications to man-
agement, up to the decision making bodies. The ability to communicate modelling results
with varying levels of complexity is crucial in this setting. However, effective communica-
tion is highly contextual. The technical knowledge and experience can vary greatly within
decision making bodies and their audiences. Thus, there is no one-size-fits-all mapping
between workflow outputs and target audiences. Instead we provide some broad guid-
ance and suggestions on matching individual outputs with target audiences as follows.
We layer target audiences by how close they are to the technical details of the analysis
going from analysts, who perform the analysis, to management, who aggregate and filter
information from different sources (e.g. different teams of analysts) and distil information
for decision making bodies, and finally decision makers and their audiences. This gives
three levels, where guidance is to be understood as a ‘smaller or equal’, meaning that
if the target audience is the management, it also includes analysts, and if it is decision
makers, it may serve for all. Labels for the the target audience are mostly attached to
table and figure captions which summarise the outputs of our workflow.

The present paper connects different fields, ranging from machine learning and model
interpretability to statistical inference and economic forecasting. There is a growing lit-
erature that suggests that machine learning methods can outperform more conventional
models in economic prediction problems including forecasting. For example, machine
learning methods have been shown to be better at predicting bond risk premia (Bianchi
et al., 2019), forecasting macroeconomic variables such as unemployment and inflation
(Sermpinis et al., 2014; Chen et al., 2019), recessions (Döpke et al., 2017), and financial
crises (Bluwstein et al., 2020).2 However, other papers do not observe consistently im-
proved performance by using machine learning, instead finding that it is state or horizon
dependent (Kock and Teräsvirta, 2014). This mixed evidence validates our horse race as
an important first step for the workflow.

Predicting macroeconomic dynamics is challenging. Relationships between variables
may not hold over time and shocks such as recessions or financial crises might lead to a
breakdown of previously observed relationships (Ng and Wright, 2013; Elliott and Tim-

2In these problems, several variables are used to forecast the outcome variable. In the univariate
case, when only the lagged outcome is used for prediction, evidence suggests that statistical methods or
hybrid models combining statistical and machine learning approaches outperform pure machine learning
methods, on average (Makridakis et al., 2018a,b; Parmezan et al., 2019).
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mermann, 2008). In line with the literature, we suggest that it is the inherent nonlinearity
of nonparametric models that allows them to learn and exploit complex relationships for
prediction (Wang and Manning, 2013). Coulombe et al. (2020) show that this advantage
of machine learning models to exploit nonlinearities in macroforecasting is enhanced at
longer horizons. However, the nonlinear relationships learned are not directly observ-
able, which has led to the aforementioned black box critique of these models as a major
challenge to their applicability to inform decisions.

Approaches to interpretable machine learning come from different directions: epis-
temic discussions about what it means for a model to be interpretable (Miller, 2019),
technical approaches in machine learning research (Doshi-Velez and Kim, 2017), and
methodology in econometrics and statistics (Chernozhukov et al., 2018). This paper
primarily focuses on the latter two.

Miller (2019) analyses the psychology of explanations and suggests that humans ex-
pect explanations that are based on a limited number of causes rather than an exhaustive
account of all factors—acknowledging that the simplification of the problem risks intro-
ducing bias. Relatedly, Lipton (2016) argues that a high-dimensional linear model is not
necessarily more interpretable than a compact artificial neural network that learns from
only few features. Also, if the linear model is trained on abstract features, for instance,
obtained by principal component analysis, its parameters may not provide an obvious
economic interpretation.

In the machine learning literature, approaches to interpretability usually focus on
measuring how important input variables are for prediction. Variable attributions can
be either global, by assessing the variable importance across the whole data set or local,
by measuring the importance of the variables at the level of individual observations
in the form of a decomposition. Such local attributions can always be summarised in a
global variable importance measure by averaging local attributions across all observations.
Popular global methods are permutation importance or Gini importance for tree-based
models (Breiman, 2001). Popular local decomposition methods are LIME (Ribeiro et al.,
2016), DeepLIFT (Shrikumar et al., 2017) and Shapley values (Štrumbelj and Kononenko,
2010; Lundberg and Lee, 2017). Lundberg and Lee (2017) demonstrate that Shapley
values offer a unified framework of LIME and DeepLIFT with appealing properties. Most
importantly, Shapley values guarantee consistency, where a consistent measure of variable
importance preserves the relative importance between variables across situations where
such a ranking is imposed. We therefore focus on Shapley values when describing the
workflow and presenting the case study. For illustrative purposes, we contrast the use of
Shapley values with permutation importance.

These global and local attribution methods are only descriptive—they explain the
drivers of model predictions and performance, but they do not assess the predictors’ sta-
tistical significance, i.e. how certain one can be that a variable is actually important to
describe a specific outcome. We extend our interpretation of machine learning models
for forecasting by statistically testing the predictors in a Shapley regression framework
(Joseph, 2019). Shapley values and inference based on them is arguably the most gen-
eral and rigorous approach to address the issues of machine learning interpretability and
model communication. In this way, we close the gap between two traditional modelling
approaches, the maximisation of predictive performance using ‘black box’ machine learn-
ing methods and the application of statistical techniques to make inferences about the
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data generating process (Breiman et al., 2001).
The remainder of this paper is structured as follows. Section 2 describes the proposed

workflow. The data and the methodology used for the macroeconomic forecasting study
used throughout this paper is introduced in Section 3. Section 4 presents the outputs of
the workflow for our baseline scenario. This includes model performances, the analysis
of feature importances and learned functional forms, and statistical inference. Section 5
discusses a rich set of robustness checks for varying different choices within the baseline
scenario, and how they relate to different aspects of the proposed workflow. We conclude
with a short discussion in Section 6. The technical appendix discusses the computation of
model interpretability measures used in the case study, permutation importance, Shapley
values and regressions.

2 A machine learning workflow

Our proposed workflow for the use of machine learning models is geared towards situations
where model interpretability and the communication of modelling results is important.
It consists of three steps, a model comparison, the assessment of variable importances
and statistical inference on model components. The latter two steps are required due to
the opaque nature of machine learning models.

We keep the notation deliberately simple and general, with a more detailed and specific
description used in the next section and the technical appendix. We say that a model
f(x; θ) = ŷ takes inputs x, consisting of N variables indexed k and has fitted parameters
θ. The model predicts the target variable y = ŷ + ε, with ε being the error term of which
some form is minimised during model training (fitting), e.g. the squared error ε2. The
Greek letter φk denotes variable components of f , i.e. f(x) = ∑Nk=0 φk(x), with φ0 being an
intercept. Additionally, let us denote P as a performance metric to evaluate the goodness
of a model. This may be the error training objective E but can be some other quality of
a model we care about.

2.1 Step 1: model comparison

Machine learning methods require additional effort from the modeller compared to con-
ventionally used econometric models (steps 2 and 3). Thus, the first step is to decide
whether to proceed with any further analysis of the machine learning models by com-
paring their performance to that of a benchmark model. The performance metric P can
for example be the absolute forecasting error when predicting a continuous variables in
a time series. However, P can also have a more complex forms. For example, it may
be a function describing the trade-off between type one and two errors when predicting
a binary variable, or when describing treatment heterogeneity in an experimental set-
ting. Crucial questions regarding this horse race are what models (not) to compare, their
stability, and what or how much data to use.

2.1.1 Model selection

The choice of models can be both specific and general. Specific in the sense that there are
established models for certain tasks, which can serve as benchmark. General in the sense
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that it is usually not possible to know for machine learning models which models will
predict best in a given situation (Fernández-Delgado et al., 2014). A reasonable start are
popular general-purpose machine learning models, like random forests, gradient boosting,
support vector machines and artificial neural networks (see Friedman et al. (2009) for
an introduction to different models). Some authors include penalised regressions in the
machine learning toolbox. These models arguably lie at the boundary between traditional
econometric and machine learning techniques. We do not include them in the latter, as
they do not have the universal approximator property (see for example Cybenko (1989)).
Universal function appoximation means that a model will, under the right circumstances,
learn to approximate any functional form given enough training data. A further difference
between the two classes of models is that the parameter vector θ is clearly defined for
(penalised) regression models, while it generally undefined in terms of its shape and
values for machine learning models. These are set during the cross-validation and training
process, respectively.

Some machine learning models may not be suited for a certain prediction task. For
example, support vector machines have substantial computational costs when the dataset
is large. Random forests can be memory intensive, especially when allowed to grow many
large trees on a large dataset. Further, random forests are not suited for extrapolation
beyond the training set, i.e. they cannot make predictions that exceed the observed values
in the training set. On the other hand, random forests can deal well with high-dimensional
data and a limited number of observations. Compared to other methods, they also deal
well with extreme values and correlated variables.

Artificial neural networks are both computation and data intensive. They have a
wide range of architectures, some adapted to certain data types (see Goodfellow et al.
(2016) for an overview) but finding the appropriate architecture and other hyperparam-
eters can be a challenging task. In contrast, support vector machines only have a few
relevant hyperparameters and the random forest often performs well without tuning the
hyperparameters at all.

2.1.2 Model stability

Another aspect to consider is model stability. A linear or support vector regression will
always produce a deterministic optimal solution, while the training process of a random
forest or artificial neural network is not deterministic, leading to different solutions when
trained repeatedly on the same data with different random seeds. D’Amour et al. (2020)
showed for complex neural networks that these different solutions can produce substan-
tially different predictions on new data that differs from the distribution on which the
model was trained. We may encounter this situation in economic forecasting when there
is some unknown drift in the data generating process. Further, the hyperparameter search
can introduce randomness into the training of any machine learning method. For complex
models, such as gradient boosting or artificial neural networks, an exhaustive search for
hyperparameters often is infeasible. In practise one only tests a few values for selected
key hyperparameters. Alternatively, one employs a random search testing only a subset
of all possible combinations in a larger hyperparameter space. Ideally, a machine learning
model is insensitive to changes in its hyperparameters which makes a model comparison
more robust and increases the replicability of the modelling.
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A remedy for low model stability is averaging several models trained based on different
random seeds or slightly different training samples. However this comes at the cost of
increased computational requirements—for training the ensemble of models, storing them
and explaining their predictions.

2.1.3 Data & variables selection

We assume that the dataset is structured, i.e. it can be represented well in a table.3 A
modeller might be tempted to use all available variables as predictors. However, includ-
ing more variables increases the likelihood that a model exploits spurious correlations
that might not hold outside the training sample increasing model variance and lowering
performance.

Accordingly, one strand of the forecasting literature recommends to hand-pick a few
predictors based on prior causal knowledge (Einhorn and Hogarth, 1985; Armstrong et al.,
2015). Another important consideration is the number of observations per variable. For
example, a standard least squares regression model cannot find a model if there are more
variables than observations in the data. Penalised regression methods, like lasso and
ridge can produce a solution in that case (Chetverikov et al., 2020). However, the rate of
convergence of a nonparametric estimator depends on the dimension of the input space
(Stone, 1982). Convergence rates for machine learning models can be low and the theory-
based estimates of convergence rates is mostly not practical in real-world situations.4 The
potential problem with slow convergence, especially in high-dimensional settings, is that
a model may show high variance and thus perform poorly.

On the other hand, some studies have reported successes in forecasting with large sets
of variables (Chen et al., 2019; Medeiros et al., 2021)—but at the cost of interpretabil-
ity: The more features are used in a model, the more difficult it is to understand and
communicate the model independent of the type of model used.

A common approach to increase the predictive performance and simplify the predic-
tion model is to calibrate it on common factors that provide a lower-rank representation
of the large set input variables (Stock and Watson, 2002; Kim and Swanson, 2018). How-
ever, this approach also makes the interpretation of the resulting model challenging as
the data-driven factors do not necessarily have a clear interpretation. In contrast, using
a small hand-picked set of diverse predictors allows us to interpret their relationship with
the response variable as learned by the prediction models. But this might lead to a de-
crease in performance in some datasets. Giannone et al. (2021) use Bayesian modelling
on a handful of data sets to show that selecting a small set of predictors from a large set
of variables is often not feasible without trading off the performance of a linear model.

Two other aspects that need to be considered are data revisions and a reporting lag.
Macroeconomic data are often substantially revised (Runkle et al., 1998). Using the
most recent vintage in pseudo out-of-sample forecasting removes the data uncertainty
but resived data cannot be used when the forecasting model is used in real time to make
predictions about the future. Furthermore, data is often only reported with a delay, e.g.

3The complement to this is unstructured data such as text, images, video, etc. On these kind of data,
artificial neural networks generally perform better than other machine learning approaches, while data
always need to be brought into some potentially very high-dimensional tabular representation.

4They may, nevertheless, be estimated empirically if enough observations are available.
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GDP growth for this month might only be published the following month. In this case,
a real-time forecast 12 months ahead on this variable is actually is a 13-month ahead
forecast.

Finally, in a forecasting setting, the modeller needs to determine how many obser-
vations should be used to train the model. There is a trade-off between using all past
data which improves the convergence of the model or only recent data, which avoids that
the model is trained on observations that do not reflect the present and future due to
structural shifts over time.

2.2 Step 2: variable importance

Variable importance measures usually answer one of two questions. How important is
a variable for a model’s performance P? Or, how important is a variable to generate
a predicted value ŷ? The two questions are related: the more accurate a model is, the
closer ŷ is to y and thus the more similar the two metrics of importance will be.

Measures related to P often are global, which means they provide a single number for
each variable and model across the test set.5 This is practical for communication, as one
obtains a simple variable ranking. Global measures, however, can obscure many nuances
of a model. For instance, machine learning models are nonlinear (often non-monotonic)
and, as such, a global measure risks oversimplification or producing inconclusive results
when evaluated across differing domains of the input space.

Local importance measures decompose individual predictions f(xt) of observation t
into attributions of the individual features:

f(xt) =
N

∑
k=0

φk(xt) , (1)

with φ0 being a model baseline value (intercept). Equation 1 defines an additive
feature attribution. The advantage of feature importance measures of this form is that it
provides more detailed information. For instance, comparing inputs xk with attributions
φk provides the functional form of feature k learned by this model. Furthermore, any
local measure can provide global information via aggregation.

We employ two feature importance measures that are model-agnostic, unlike other
approaches, such as Gini impurity (Kazemitabar et al., 2017; Friedman et al., 2009),
that are only compatible with specific machine learning methods. We argue for the
use of Shapley values (Shapley, 1953; Štrumbelj and Kononenko, 2010; Lundberg and
Lee, 2017), which are local and of the form (1) and contrast them with permutation
importance (Breiman, 2001; Fisher et al., 2019), a simple global measure. A concise
technical description of both measures is provided in the technical appendix.

The idea of these and other feature importance measures is to either remove the infor-
mation of the variables of interest, or that of the other variables in the model, and then
to observe how model outputs change. Permutation importance does this by randomly
shuffling the values a variables and to observe how much the performance of the model

5Variable importance can be evaluated on any fraction of the test set. Evaluation of the training set
has to be interpreted with caution because of overfitting. However, comparisons across training and test
sets can help to identify problems of model generalisation, such as overfitting.
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deteriorates over the test set. Shapley values, on the other hand, explain individual pre-
dictions by measuring the contribution that a variable makes on top of others in the
model. Shapley values have the advantage that they come with a set of appealing math-
ematical properties inherited from their game theoretic origins (Young, 1985; Lundberg
and Lee, 2017). In particular, Shapley values are the only variable attribution scheme
which provides accurate local, linear attributions (Equation 1), respects null contribu-
tions, and is consistent. Consistency is a monotonicity property, that is, if a variable
is more important in a model compared to another model, then it should also have a
larger importance attributed to it. Most popular feature attribution metric do however
violate consistency (Lundberg et al., 2020), which makes Shapley values the preferred
importance measure, especially for local attribution. Computing Shapley values is com-
putationally more demanding than computing permutation importance. However, there
exist accurate approximations that substantially reduce the computation time of Shapley
values which we will investigate as well.

While the primary goal of a model comparison (Step 1 of the workflow) is to identify
the most accurate model, it is also informative for the modeller to compare different
machine learning methods in their variable importance. Strong disagreements in the
importance or functional forms learned by the models can be an indication that the
modelling needs to be refined. The better aligned the models are in how they use the
predictive variables, the more confident the modeller can be that the models generalise
well to the data generating process.

The information derived from global and local feature importance measures is de-
scriptive. They do not by themselves provide measures of certainty, i.e. an estimate on
how certain one can be that a variable is actually important to describe or predict the
outcome. This is the realm of statistical testing, e.g. in the form of hypothesis testing.

2.3 Step 3: Shapley regressions

Linear regression-based models are the workhorse in many applied settings as they allow
for standardised and well-established communication. They achieve that by the means
of regression coefficients and statistical tests that show whether these are different from
zero. The canonical test against the null that there is no effect means that we test if there
is a significant alignment between a variable of interest and the target (reject the null).
We can ask the same about local attributions coming from the variables components φk
in Equation 1 within a linear regression setting (Joseph, 2019),6

yt = φS0 +
N

∑
k=1

φSk (xt)βSk + εS with H0
k ∶ {βSk ≤ 0 ∣xt ∈ Ω} (2)

Equation 2 is almost identical to a standard linear regression with two differences.7 First,
the null hypothesisH0

k includes negative values. This is because Shapley values absorb the
sign of a contribution, such that only significant positive values for βS mean alignment.
Second, inference from Equation 2 is only valid within a region Ω, usually the test set.

6This approach differs from the previous use of Shapley values in econometrics to analyse multi-
collinearity (Lipovetsky and Conklin, 2001).

7Eq. 2 is based on generated regressors (Pagan, 1984). The validity of inference and asymptotic
properties of estimating the βS are discussed in detail in Joseph (2019).
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This is because nonlinear machine learning models may show alignment with the target
only in bounded regions of the input space. Nonlinearity also means that we cannot
summarise a variables importance by a single coefficient universally. We can, however,
define something akin to a linear regression coefficient within a region Ω. Let sign be

the sign of the coefficients when regressing y on x, and let ψtk =
∣φSk (xt))∣
∑N

l=1 ∣φSl (xt)∣
be the share

of absolute Shapley values of observation t attributed to variable k. The average share
of Shapley values across all observations in Ω is denoted by ψ̄k = 1

∣Ω∣ ∑xt∈Ωψtk.8 Further,

let (∗) indicate the confidence level with which we can reject H0
k according to Equation

2, then we define the

Shapley share coefficient: Γk ≡ sign ψ̄(∗)k ∈ [−1,1] . (3)

Shapley share coefficients can be communicated as commonly used regression coefficients
in a well-known table form. The interpretation of Γk is also similar to that of a regression
coefficient as it measures strength and confidence in alignment with the target variable.
However, it cannot be interpreted as a marginal effect, unless the model is linear. In this
case, Shapley share coefficients are aligned with the actual linear regression coefficients.

3 Data and experimental set-up

We describe the notation, data and experimental procedure for the macroeconomic fore-
casting exercise which we use to demonstrate the proposed machine learning workflow.

We first introduce the necessary notation. Let y and ŷ ∈ RT be the observed and
predicted outcome, respectively, where T is the number of observations in the time series.
The feature matrix9 is denoted by x ∈ RT×N , where N is the number of features in the
dataset. The feature vector of observation t is denoted by xt. Generally, we use t to index
the point in time of the observation and k to index features. The forecasting horizon in
months is denoted by h. The forecasting horizon is a crucial aspect regarding the purpose
of a forecast. One does not necessarily expect models to perform equally well or to pick up
the same information across horizons. The default discussed in this paper is the one-year
forecast (h = 12), sitting between short and medium-term projections.

3.1 Data

We use the FRED-MD macroeconomic database (McCracken and Ng, 2016) which con-
tains monthly macroeconomic indicators for the US. Our vintage of the data goes from
1959 to 2019. Our forecast target are changes in unemployment and we hand-pick nine
variables as predictors in our baseline approach, each capturing a different macroeconomic
channel. We use the stationarity transformations suggested by the authors of the dataset
that include first differences (∆l(x) = xt − xt−l), log differences (∆llog(x)) and second
order log differences (∆llog(xt)−∆llog(xt−l)). Given that we predict the yearly change of
unemployment, we set transformation span l to 12 for the outcome and lagged outcome

8Shapley values do not have a natural scale on which to represent them and they can change alongside
the region Ω being considered. This motivates the normalising denominator in the definition of ψt

k.
9Features or predictors in the machine learning literature correspond to independent variables, or just

variables. The observed, response, outcome or dependent variable is often referred to as the target.
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Variable Transformation Name in the FRED-MD database
Unemployment changes UNRATE
3 month treasury bill changes TB3MS
Real personal income log changes RPI
Industrial production log changes INDPRO
Consumption log changes DPCERA3M086SBEA
S&P 500 log changes S&P 500
Business loans second order log changes BUSLOANS
CPI second order log changes CPIAUCSL
Oil price second order log changes OILPRICEx
M2 Money second order log changes M2SL

Table I: Series used in our baseline forecasting experiment. The middle column shows
the transformations suggested in by the authors of the FRED-MD database, the right
column shows how the series are named in that database. Target audience: analysts.

(predictor) variables. For the remaining predictors, we set l = 3 in our baseline set-up.
Table I shows the variables, with the respective transformations and the series names in
the original database. The augmented Dickey-Fuller test confirms that all transformed
series are stationary (p < 0.01). Different choices for handling the data, like choosing l as
well as the aspects discussed in Section 2.1 are investigated in detail in Section 5.

3.2 Models

We test two types of models, a simple autoregressive model and several full-information
models containing lags of the response variable and the features. The latter group is
further split into linear regression models, with and without penalisation, and nonlinear
machine learning models.

The autoregressive model (AR) uses lagged values of the response variable as pre-
dictors: ŷt = α +∑Ll=1 θlyt−l. We test AR models of lag lengths 1 ≤ L ≤ 12, where we chose
L using the Akaike information criterion in the training set. We also test a simple AR1
model by setting L = 1. The models fitted coefficients are given by θ ∈ RL. Forecasts
over a horizon h are obtained iteratively from ŷt+h = α +∑Ll=1 θlŷt+h−l.

The full-information models use the h-month lag of the outcome variable and the
other features as independent variables: ŷt = f(yt−h, xt−h; θ), where f is any given pre-
dictive model. For example, if f is a linear model, a horizon-h projection takes the form
ŷt = α + θ0yt−h +∑Nk=1 θkxt−h,k + εt, with εt being the error term. To simplify notation in
what follows, we include the lagged outcome in the feature matrix x. We test seven full
information models: ordinary least squares regression, regularised regression with ridge
and lasso penality, and four machine learning models: random forests (Breiman, 2001),
gradient boosting (Friedman, 2000), support vector regression (Drucker et al., 1997),
and artificial neural networks (Goodfellow et al., 2016)). Table A-1 in the technical
appendix provides details on the implementation of the models.
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3.3 Experimental procedure

We evaluate how all models predict l = 12 month changes in unemployment h = 12 months
ahead in an pseudo out-of-sample setting with an expanding horizon. All methods are
evaluated on the 359 data points of the forecasts between January 1990 and November
2019 using an expanding window approach. We choose the absolute error as our perfor-
mance metric. It is easy to interpret and less sensitive to outliers than the squared error.
Accordingly, we pick the hyperparameter values that minimise absolute error.10

We fit, i.e. train, the AR models every month. The full information models are
trained every 12 months such that each model makes 12 predictions before it is updated.
Compared to updating the models every month, this reduces the computational cost
considerably, while only minimally affecting model performance in normal times, and it
does not affect the model comparison. However, one may refit a particular model more
frequently during operation. Especially machine learning models can be quick in picking
up different or new (economic) regimes as we will see below.

As the models predict changes h months ahead, we have to create an initial gap
between training and test set when making predictions to avoid a look-ahead bias. For a
model trained on observations 1 . . . t, the earliest observation in the test set that provides
a pseudo real-time h-month forecast is t+h. For observations t+ 1, . . . , t+h− 1, the time
difference from the last observation in the training set t is less than one year.

Most of the models we use can be affected by outliers. We therefore test how win-
sorization of the features at the 1st and 99th percentile affects the predictive performance.
We do not winsorise the response variable and the lagged response that is used as a
feature.

All machine learning models that we test have hyperparameters which need calibra-
tion. We use two types of cross-validation for the hyperparatmer tuning. First, we employ
ordinary five-fold cross-validation (see Chakraborty and Joseph (2017)), which does not
consider temporal dependencies in the data, but randomly assigns the observations in
the training set to five folds. Second, we use five-fold block cross-validation (Snijders,
1988; Bergmeir and Beńıtez, 2012) where the five folds are assigned to five consecutive
blocks. This approach respects the temporal dependency of the training and test data.
More concretely, we use hv-block cross-validation (Racine, 2000), which additionally in-
troduces a gap of 12 months between blocks of the training and test set. We employ a
random search across 100 hyperparameter combinations and pick the hyperparameters
that minimise the mean absolute error.

As the hyperparameter optimisation is computationally expensive, we conduct it only
every 36 months. Even during operation, it is unlikely that hyperparameters need to be
updated with a higher frequency unless one expects dramatic model changes, e.g. due to
a large change in the data generating process. Smaller changes will be reflected in the
changes in the model parameters (e.g. the weights of the neural network) rather than
hyperparameters (e.g. the architecture of the neural network).

To increase the stability of the full information models, we train each model 30 times
on different bootstrapped samples of the training set and average their predictions. This
bootstrap aggregation approach is also referred to as bagging in the literature (Breiman,

10Note however, that different models have different loss functions. Minimising these is not necessarily
equivalent to minimising the absolute error.
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1996). Each of the 30 models uses the same hyperparameters, which are calibrated on
the full training set.

To estimate how stable our models are, we repeat each experiment—including the
training of the 30 boostrapped models every 12 month and the hyperparmaeter search
every 36 months—10 times for all methods, each time with a different random seed.
Sources of randomness that can lead to performance differences between these 10 iter-
ations are the chosen hyperparameters,11 the random bootstrap samples, and random
initialisations of the random forest, gradient boosting, and neural networks.

4 Workflow output

This section presents the results of our workflow when applying it to the baseline setting
for forecasting changes in the US unemployment rate on a one-year horizon as described
in the previous two sections. Not all results presented here are meant to be communicated
during operation. Rather, we also present additional analyses that are only relevant for
the technical expert that is developing a forecasting model or that are shown for illustra-
tion purposes to help the reader better understand the technicalities of the workflow.

4.1 Step 1: Model performance

Table II summarises the empirical performance of the different forecasting models. For
this table and the following analyses, we applied winsorisation to all models and used
hv-block cross-validation for the hyperparameter search. Further, to obtain more stable
predictions, we average the predictions of ten models each trained with a different random
seed. In the table, the models are ordered by decreasing mean absolute error over the
whole test period between 1990 and 2019.

The table also breaks down the performance in three periods: the 1990s and the
periods before and after the global financial crisis (GFC, September 2008). The best
model in the individual periods is highlighted in bold. We statistically compare the error
of the best model in each period, against all other models using a Diebold-Mariano test.12

All machine learning models outperform the linear models on the whole sample. In
the 1990s and the periods before the global financial crisis, the difference in performance
between the models is rather small compared to the period after the crisis. This is
indicative that machine learning models may be particularly suited for detecting regime
shifts or the modelling of nonlinearities, both aspects we will investigate in more detail.

The simple AR1 models performs better than the AR12 model and the linear full-
information models. Ridge and lasso regression perform very similar, both outperforming
the OLS regression. In the following analyses we will only consider one AR model, the
AR1, and will focus on one regression model, the ridge regression.

11Both the randomly selected hyperparameter combinations and the random assignments to folds when
using k-fold cross-validation (folds in hv-block cross-validation are not randomly assigned) can induce
randomness.

12The horizon of the Diebold-Mariano test is set to 1 for all tests. Note however, that the horizon
of the AR models is 12 so that the p-values for this comparison are biased. Setting the horizon of the
Diebold-Mariano test to 12, we do not observe significant differences between the RMSE of the random
forest and AR.
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Time period 01/1990– 01/1990– 01/2000– 09/2008–
11/2019 12/1999 08/2008 11/2019

Gradient boosting 0.559 - 0.460 - 0.466 - 0.718 (0.353)
SVR 0.565 (0.323) 0.470 (0.328) 0.489 (0.219) 0.709 -
Forest 0.581 (0.018) 0.472 (0.240) 0.471 (0.413) 0.762 (0.005)
Neural network 0.589 (0.009) 0.468 (0.336) 0.503 (0.070) 0.762 (0.001)
AR1 0.608 (0.063) 0.472 (0.382) 0.503 (0.216) 0.811 (0.064)
AR12 0.626 (0.001) 0.543 (0.011) 0.482 (0.356) 0.810 (0.001)
Lasso regression 0.637 (0.000) 0.498 (0.061) 0.474 (0.378) 0.886 (0.000)
Ridge regression 0.639 (0.000) 0.497 (0.065) 0.481 (0.272) 0.886 (0.000)
OLS regression 0.648 (0.000) 0.516 (0.016) 0.508 (0.053) 0.872 (0.000)

Table II: Forecasting performance for the different prediction models in the baseline
set-up. The models are ordered by decreasing MAE on the whole sample. The best
performing model in each time period is highlighted in bold. The p-values in parentheses
indicate the statistical significance (one-sided) of the Diebold-Mariano test comparing
the best model in each column with the other models. Target audience: management to
decision makers.

Apart from the aggregated performance across the test period, it is informative to
to look at the models’ individual predictions. Figure I (top panel) shows the observed
response variable and the predictions of gradient boosting, ridge regression, and the AR1

model. The bottom panel shows the prediction error. The vertical lines indicate the
different time periods distinguished in Table II. All three models underestimate unem-
ployment growth during the global financial crisis and overestimate it during the recovery.
However, the gradient boosting model is least biased in those periods and forecasts the
increase in unemployment earlier during the crisis. A similar observation can be made
after the burst of the dot-com bubble in the early 2000s. Such a chart can be presented
to the policy maker to convey the model’s performance in a clear and detailed way.

4.2 Step 2: Feature importance

We explain the predictions of the machine learning models and the linear regression as
calibrated in our baseline set-up. Our focus is largely on explaining forecast predictions
in a pseudo real-time setting. However, in some cases it can be instructive to explain the
predictions of a model that was trained on observations across the whole time period.
For that, we exploit the fact that we trained the models on 30 different bootstrapped
samples across the whole time series. Each of these models can make predictions on
those observations not in the bootstrapped training sample. In this way we obtain several
predictions for each observation in the time series, which are then averaged. This out-of-
bag analysis is subject to look-ahead bias, as we use future data to predict the past, but
it allows us to evaluate a single model for the whole time series.

We first analyse our two methods of model interpretation at a global level. Figure II
compares Shapley shares ∣ΓS ∣ (left panel) with permutation importance (middle panel).
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Figure I: Comparison of observed and predicted outcome. The top panel shows the
observed 1-year change in unemployment and the predictions by the gradient boosting
model, ridge regression, and the AR1. The bottom panel shows the error of these two
methods. Target audience: management or decision makers.

The variables are sorted by average Shapley shares of the four machine learning models.
Vertical lines connect the lowest and highest share across models for each feature to
highlight the disagreement between models.

Shapley values and permutation importance do not agree in their ranking of feature
importance. For instance, using a random forest model, the 3 month treasury bill seems
to be a more important indicator according to permutation importance than according
to Shapley calculations.

The permutation importance is a measure of a feature’s influence on the accuracy of
the model and is affected by how the relationship between outcome and features changes
over time. In contrast, Shapley values reflect a variable’s influence on the predicted
value, independent of that value’s accuracy. Arguably this measure of importance is
more useful in a forecasting setting when the variable importance should be computed
for data points for which the true outcome has not been observed yet, which means
that permutation importance is not computable. The right panel of Figure II shows
an altered measure of permutation importance. Instead of measuring the change in the
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Figure II: Variable importance according to different measures. The left panel shows
the importance according to the Shapley shares ∣ΓS ∣ and the middle panel shows the
variable importance according to permutation importance. The right panel shows an
altered metric of permutation importance that measures the effect of permutation on the
predicted value rather than prediction error. Target audience for the left panel: decision
makers. Permutation importance is shown for illustrative purposes.

error due to permutations, we measure the change in the predicted value.13 We see that
this importance measure is more closely aligned with Shapley values. Further, when we
evaluate the error-based permutation importance metric using predictions based on the
out-of-bag analysis, we find a strong alignment with Shapley values (not shown) as the
relationship between variables is not affected by the changes between the training and
test set.14

Overall, the different prediction models have a similar importance ranking of the
features according to the Shapley share. There are, however some notable differences—
especially the ridge regression model often differs substantially from the other models
in the Shapley shares. Even the different machine learning models do not completely
agree on the relative importance of features. For example, gradient boosting gives more
importance to the lagged unemployment indicator than the other methods.

While the computation of Shapley values is technically rather complex and difficult
to communicate to a non-technical audience, we believe that the the intuition behind
Shapley values as the contribution to the model’s predictions is easy to understand.
Thus, a chart such as the left panel of Figure II—but only showing the best performing
model—can be communicated to decision makers.

This global analysis only conveys which variables are important across all observations
in the test set. Local attributions will often be more useful in a pratical setting as they
allow to assess individual, e.g. the latest, predictions.

13This metric computes the mean absolute difference between the observed predicted values and the
predicted values after permuting feature k m times: 1

m ∑
m
i=1 ∣ŷi − ŷ

perm
i(k)

∣. The higher this difference, the

higher the importance of the feature k (see Lemaire et al. (2008) and Robnik-Šikonja and Kononenko
(2008) for similar approaches to measure variable importance).

14Comparing out-of-sample and out-of-bag measures allows to evaluate model drift and look-ahead
bias more generally.
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Figure III: Functional forms learned by different models for five features with the highest
average Shapley share. The lines shows a third degree polynomial fitted to the data. The
Shapley values are computed on the out-of-bag predictions and are therefore subject to
look-ahead bias. Target audience: analysts (comparison); decision makers (single model
if robust).

Local attributions also reveal the functional form learned by a model. To illustrate
this, we consider the out-of-bag predictions, abstracting away from model drift which we
discuss in a moment. Here, the most accurate models are the gradient boosting model
(absolute error of 0.431) followed by the random forest (0.450), the SVR (0.452), the
neural network (0.452), and ridge regression (0.584).15

15As in the forecasting setting, winsorisation is applied as it helps the performance of the SVR (see
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Figure III shows the functional forms that the machine learning models have learned
from the most important features according to Shapley shares shown in Figure II (left
panel). It depicts local Shapley values against the observed input values (horizontal axis)
with rows show the variables and columns the different models. The approximate func-
tional form learned by each model for each feature is traced out by a best-fit third-degree
polynomial. Although the four machine learning methods use very different learning
mechanisms and even do not agree perfectly on the global importance of features, the
functional forms learned by all of them are highly consistent for all variables shown. This
gives us confidence that the functions learned are meaningful and robust.

For example, consider the S&P 500. The ridge regression learns a steep negative slope
with higher stock market values being associated with lower unemployment one year
ahead. This makes economic sense. However, we can make more nuanced statements
when looking at the other models. There is an asymmetry between market increases and
decreases. While large decreases suggest large increases in unemployment down the line,
there is a saturation effect for high market valuations with only a small expected decrease
in unemployment.

For unemployment, all machine learning models learn a quadratic function. A high
increase in unemployment makes future increases in unemployment less likely compared
to a medium increase. For business loans we also observe a quadratic function, where
very low and high loans leading to a positive predicted change in unemployment. In
contrast, the linear model cannot model quadratic trends so that it is not surprising that
the Shapley share of these two variables (Figure II, left panel) are substantially smaller
according to the linear model compared to the machine learning models.

Figure III serves several purposes. The functional forms learned from the data, al-
though not causal, might provide new economic insights about the underlying processes.
These can than be further investigated by, for example, using structural models. Further,
by providing information about the inner workings of different models, these charts can
be used as a diagnostic tool for the technical expert training and tuning the model. For
instance, if the functional forms learned by a SVR are mostly linear whereas those of
the other machine learning models are not, this might suggest a problem constraining
the flexibility of the SVR. Finally, by evaluating the functional forms learned at different
points in time, model drift or structural breaks can be detected.

For example, we consider the out-of-bag predictions of the models trained up to three
different points in time. Figure IV shows the functional form for the lagged unemployment
change variable. The ridge regression model (left panel) trained up to the periods 2000
and 2008 finds no predictive power for lagged unemployment. It is only after the onset of
the GFC that the regression learns a positive relationship—an increase of unemployment
increase the predicted increase unemployment one year ahead. However, this is simply
reflective of the trend—the 1-year unemployment change was high for a prolonged period
following the financial crisis: it was persistently greater or equal to one percentage point
for 23 consecutive months (May 2008–March 2010). In contrast, the functional form of
the gradient boosting model (right panel) is rather stable. Across the three time periods
it learns a non-monotonic relationship where high absolute values in the unemployment

Section 5), while it does not substantially affect the other models’ performance. In the out-of-bag
analysis, we use k-fold cross validation rather than blocked cross-validation as this generally improves
the performance.
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make future increases in unemployment less likely compared to a small changes. The scale
of this learned functional form increased after the GFC in line with larger movements in
the unemployment rate during this time.
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Figure IV: Functional form of lagged unemployment change learned by ridge regression
(left panel) and gradient boosting (right panel) for three models trained up to different
points in time. The lines show third degree polynomials fitted to the data. Target
audience: analysts.

To better understand the non-monotonic function of lagged unemployment change
learned by the gradient boosting model, we look into the role of recessions within the
model.16 Figure V (left) again shows the functional form of lagged unemployment as
learned by the gradient boosting model in the out-of-bag set-up. But now recession
observations (also lagged by a year) in the input space are highlighted in red. Even though
we did not include recessions explicitly as an indicator the model could learn from, these
periods account for a large share of the downwards sloping part on the right-hand side.
This makes economic sense, as recessions typically lead to increases in unemployment.

We further elaborate on this observation by including a lagged recession dummy in
our models and compute the Shapley-Taylor index (Agarwal et al., 2019) to decompose
the predictions into the main effects from past unemployment, the recession dummy and
their interaction.17

The Shapley values of this interaction as well as the main effect of lagged unemploy-
ment are shown in the right panel of Figure V. The main effect of lagged unemployment
still shows the inverted U-shaped form—even after controlling for interactions with all
other variables. The Shapley values of the interaction show that during a recession there

16We use the definition of recessions provided by the Federal Reserve Bank of St. Louis (Federal Reserve
Bank of St. Louis, 2020).

17We follow Joseph (2019) in his empirical approach and group all remaining variables into a single
“other” variable to reduce the computation time. We compute the Shapley Taylor expansion to the third
order (see Section 6) such that two-way interaction terms are unbiased.
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Figure V: Interaction between unemployment changes and recessions as learned by a gra-
dient boosting model. The left panel shows the functional form of lagged unemployment
changes when the model is trained on the baseline features without a recession dummy
(as in Figure IV). The right panel includes the Shapley values of the interactions when the
model was trained with a recession indicator. Target audience: analysts (comparison);
decision makers (recession effect only, right hand side)

is an additional strong negative effect of lagged unemployment on the prediction for larger
values (red).

While including the recession indicator improves the interpretation of the results and
the interaction with unemployment has high Shapley values that contribute substantially
to the prediction, the predictive accuracy of the gradient boosting model does not increase
meaningfully. Adding the recession indicator, the forecast error only slightly decreases
from 0.559 to 0.554. This suggests that the model learned the role of recession periods
implicitly incorporating two different regimes, normal times and recessions.

4.3 Step 3: Statistical inference with Shapley regressions

Shapley value-based inference (Equation 2) allows us to communicate machine learning
models analogously to a linear regression analysis. In Table III, we present the Shapley
regression for the full out-of-sample forecasting period between 1990 and 2019 based on
the predictions of the gradient boosting model. For illustrative purposes, the table also
shows the Shapley regression for the ridge regression.

As mentioned above, the coefficients βS measure the alignment of a variable with the
target. Values close to one indicate perfect alignment and convergence of the learning
process. Values larger than one indicate that a model underestimates the effect of a
variable on the outcome. And the opposite is the case for values smaller than one. This
can intuitively be understood as the model hyperplane of the Shapley regression either
tilting more towards a Shapley component from a variable (underestimation, βSk > 1)
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Gradient boosting Ridge regression
βS p-value ΓS βS p-value ΓS

Industrial production 1.132 0.000 -0.217*** 2.280 0.000 -0.185***
S&P 500 0.942 0.000 -0.191*** 0.907 0.000 -0.317***
Consumption 1.103 0.000 -0.177*** 0.966 0.012 -0.173**
Unemployment 1.443 0.000 +0.175*** 9.789 0.000 +0.031***
Business loans 3.086 0.000 -0.066*** 5.615 0.006 -0.035***
3 month treasury bill 4.273 0.000 -0.062*** -6.816 1.000 -0.042
Personal income -0.394 0.682 +0.04 -0.658 0.870 +0.138
Oil price 0.298 0.387 -0.035 -2.256 0.973 -0.055
CPI 0.272 0.438 +0.021 -4.294 0.875 +0.014
M2 Money -8.468 1.000 -0.016 -18.545 0.994 -0.009

Table III: Shapley regression of gradient boosting mode (left) and the ridge regression
(right) for the forecasting predictions between 1990–2019. Significance levels: ∗p<0.1;
∗∗p<0.05; ∗∗∗p<0.01. Target audience: analysts (comparison); decision maker (left hand
side).

or away from it (overestimation, βSk < 1). Significance decreases as the βSk approaches zero.

Variables with higher Shapley shares ∣ΓS ∣ (same as in Figure II) tend to have lower
p-values. This is intuitive, demonstrating that the model learns to rely more on features
that are important for predicting the target variable. However this does not hold by
construction, especially not in a forecasting setting where the relationships between vari-
ables change over time, any statistical significance may disappear in the test set—even
for features with high Shapley shares.

One more variable is statistically significant for the gradient boosting method than
for the linear model. This is expected given the greater flexibility of machine learning
models. It also provides further evidence of how non-parametric methods, like gradient
boosting forests, exploit nonlinear relationships that linear regression cannot account for
(as in Figure III).

A Shapley regression table can provide meaningful insights for decision makers that
are acquainted with standard statistical inference for regression. Further, it can help the
technical expert to refine the model, for example by removing variables with negative
coefficients or adjust the period of analysis until the coefficients align better with the
target.

5 Robustness

We consider a wide array of alternative choices made during our baseline analysis and how
these affect the outputs from the first two steps of our workflow, model performance and
Shapley feature importance.18 We first propose and run a set of analyses that vary key

18Investigating changes in statistical alignment of feature components (step 3 of the workflow) can be
interesting during practical applications, but does not add much value to the discussion here we believe.
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parameters of our experimental set-up to test whether our results that machine learning
models outperform linear models is robust. Next, we replicate our results using real-time
data and show how our workflow can be applied to substantially larger sets of predictors.
Finally, we investigate the robustness of the Shapley values discussing computationally
cheap approximations.

5.1 Experimental set-up

In our main analysis we used a bagging ensemble of 30 models for each of the full-
information methods. We show in Figure A-1 (appendix) that only the gradient boosting
model and the neural network improve using bagging. The figure shows the mean absolute
error across the 10 iterations (based on different seeds) as a function of the bagging
ensemble size. The confidence intervals (± 1.96 standard errors of the mean) of the
gradient boosting and the neural network decrease visibly when increasing the size of the
bagging ensembles, suggesting that bagging makes these models more stable and thus
less sensitive to the random seed. In the following, we use bagging only for these two
methods to save computation time.

Further, we used blocked cross-validation for the hyperparameter search and have
averaged the predictions of ten models, each trained on a different random seed. Figure
VI (left panel) investigates the impact of these choices on model performance. It shows
the mean absolute error (MAE) across the whole test period between 1990 and 2019 and
conveys several findings.

First, the machine learning models, especially the neural network and the SVR show
a substantial variance in performance (smaller transparent dots) for the ten different
iterations based on different random seeds. Averaging the predictions across these iter-
ations (bigger non-transparent points) tends to produce more accurate predictions than
the average individual model. This variance in the error across the ten iterations reflects
substantial differences in the predictions on individual data points.

To investigate this further we measure, for each observation in the test set, the range
of predicted values across the ten iterations. The right panel of Figure VI plots the
distribution of this range across these observations. The ten models are very similar for
the ridge regression with a mean range of 0.05 (90% percentile: P90 = 0.08). The random
forest is less stable with a mean range of 0.14 (P90 =0.26) but a factor of two more stable
than the neural network with a mean range of 0.27 (P90 =0.5). This is—given a mean
absolute error of less than 0.6—a substantial variation in the the prediction of the models.

In a practical forecasting setting, the modeller might decide to slightly trade off pre-
dictive performance against model stability and choose, for example, the random forest
over the SVR. We believe that the repeated training of the same model with different
random seeds is crucial to get a sense of the stability of their performance. To stabilise
the models and make them less susceptible to the random seeds we suggests averaging
them.

Second, the type of cross-validation employed in the hyperparameter search matters
for the performance of some of the methods. The linear models, the random forest,
and the neural network do not differ markedly in their performance for the two types
of cross-validation. However, for the gradient boosting model and the support vector
regression we observe a substantially better performance when using the blocked cross-
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Figure VI: Robustness of predictions. The left panel shows the MAE of our main predic-
tion models. The small markers show the performance of the individual iterations, each
based on a different random seed. The larger markers show the average performance
across these ten iterations. For each model we test two types of hyperparameter searches
(k-fold vs. hv-block cross validation). The OLS does not have hyperparameters and is not
affected by this test. The right panel shows the variation in the predicted values across
the ten iterations. For each observation in the test period (1990–2019), we measure the
range of predicted values and show the distribution of this measure in the chart. Target
audience: analysts.

validation approach. Even rather small design factors such as the type of cross-validation
can change the conclusion about which model performs best. The fact that this and other
factors (see below) affect the performance of the models in different ways suggests that
the modeller should conduct a extensive set of experiments before identifying the best
prediction model, and also assure its stability.

We next alter several parameters with respect to our baseline set-up. The results are
shown in Table IV with the best model in each row highlighted in bold.

Prediction horizon. In the baseline set-up, we have predicted unemployment changes
h = 12 months ahead. Here, we alter the prediction horizon between 1 and 36 months.
We observe that the AR1 models competes well with the full information models at
prediction horizons 1, 3, and 6 months but falls behind when increasing the horizon.
This is not surprising as the autocorrelation in the response variables decreases with
increasing h. The table shows that the machine learning models can provide meaningful
signals for the unemployment changes at longer horizons, even three years ahead. The
good performance of the random forest is notable: For all horizons different from 12, it
performs as well as or better than the other models.

Window size. In the baseline set-up, the training set grows over time (expanding win-
dow). This can potentially improve the performance as more observations may facilitate
a better approximation of the data generating process. On the other hand, it may make
the model sluggish and prevents quick adoption to structural changes. To differentiate
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Gradient SVR Random Neural Ridge AR1

boosting forest Network regression

Prediction horizon h (lag between response and predictors in months)
1 0.20 0.19 0.17 0.18 0.18 0.17
3 0.28 0.28 0.27 0.27 0.27 0.27
6 0.41 0.41 0.39 0.42 0.43 0.41
12 (baseline) 0.56 0.57 0.58 0.59 0.64 0.61
24 0.68 0.67 0.62 0.69 0.73 0.79
36 0.64 0.63 0.61 0.72 0.72 0.80

Training set size (in months)
60 0.83 0.87 0.79 0.84 0.87 0.95
120 0.63 0.67 0.57 0.66 0.66 0.71
240 0.58 0.56 0.57 0.58 0.61 0.67
360 0.57 0.58 0.58 0.60 0.61 0.64
480 0.56 0.57 0.57 0.57 0.63 0.62
max (baseline) 0.56 0.57 0.58 0.59 0.64 0.61

Transformation span l (in months)
1 0.57 0.60 0.55 0.59 0.64 -
3 (baseline) 0.56 0.57 0.58 0.59 0.64 -
6 0.60 0.60 0.60 0.67 0.66 -
9 0.65 0.68 0.67 0.70 0.70 -
12 0.68 0.74 0.70 0.71 0.74 0.61

Winsorisation at 1% and 99%
Yes (baseline) 0.56 0.57 0.58 0.59 0.64 0.61
No 0.56 0.59 0.58 0.60 0.64 0.61

Table IV: Performance for different parameter specifications. The shown metric is mean
absolute error. The best model(s) in each row are highlighted in bold. Target audience:
management.

between these two cases, we test sliding windows of 60 to 480 months. All methods per-
form worst on the smallest horizons of 60, and only the random forest performs well on
a sample of just 120 months. Gradient boosting consistently improves its performance
with a growing sample size. This is not surprising for machine learning models, as they
can learn different regimes for different time periods due to their flexibility and exploit
them for prediction. For instance, different paths down a tree model, or different trees
in a forest, are all different submodels. By contrast, the ridge regression, like all linear
models, cannot adjust in this way and needs to fit the best hyperplane to the current
situation. This can explain why its performance declines for sample sizes larger than
360.

Transformation span. We use l = 3 months in the baseline, when calculating first
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differences, log differences and second order log differences of the predictors (see Table
I). Testing lag lengths of 1, 6, 9, and 12 months, we find that shorter horizons of 1
or 3 months generally lead to better performance than longer ones. This is useful
from a practical point of view, as quarterly changes are commonly used for short-term
economic projections.

Winsorisation Winsorisation only helps the SVR and the neural network. It does not
have a visible impact on the performance of the other models. As the response variable
is not winsorised, there is by design, no effect on the performance of the AR1 model.

Testing different training set sizes, transformation horizons, and winsorisation of pre-
dictors are crucial to refine and improve the prediction models. The choice of the predic-
tion horizons will be informed by the needs of the decision makers. But testing different
horizons can help to assess the change in predictability of the response and by explaining
predictions (see Section 4.2), one can detect differential signals provided by the predictors
at different horizons.

5.2 Real-time data

Our pseudo out-of-sample forecasting approach does not reflect how forecasts are made
in the real-world. When training and testing our models in Section 4.1, we used revised,
macroeconomic data. In a practical setting, we have to rely on early vintages that
are likely to be revised. We investigate whether the results change substantially when
replicating the horse race using real-time data.

There exist monthly vintages of the FRED-MD database19 starting from August 1999,
each providing estimates for the indicators lagging one month behind.20

As before, we predict the change in unemployment one year head, this time for the
period for which we can produce real-time forecasts (August 2000 – Novemember 2019).
As the real-time data is delayed by a month, an actual one-year ahead forecast requires
lagging the variables by 13 months. More formally, we use the data (features and re-
sponse) of the vintage at time t, which contains the measurements up to date t − 1. We
train the models with response yt′ and lagged predictors xt′−13, where t′ ≤ t − 1. To make
a prediction one year ahead (ŷt+12), we use the latest feature values of the same vintage
(xt−1) and compare the prediction against the revised response variable yrt+12. As in the
previous experiments, we update the machine learning models every 12 months, winsorise
the features and use hv-block cross-validation to calibrate the hyperparameters.

Table V compares the model performances using real-time (left two columns) and
revised data (right column). As in our main empirical analysis (see Table II) the machine
learning methods outperform the linear models, with gradient boosting being the best
model. The p-values in parentheses indicate the statistical significance (one-sided) of

19https://research.stlouisfed.org/econ/mccracken/fred-databases/
20The consumption variable is not included in the vintages before 2004. When using these vintages for

training we use the revised time series from our baseline data set. Further, the variables business loans
and real personal income have missing values in some of the vintages. Again, we replace these missing
values with the revised series. Some variables (e.g. real personal income and industrial production),
have been re-indexed for the different vintages. This does not affect our modelling as we use variable
transformations such that level differences do not matter.
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the Diebold-Mariano test, estimating whether the gradient boosting model significantly
outperforms the other models.

The predictions based on the revised data are slightly more accurate than those based
on the real-time data. This is driven by the fact that the real-time prediction is a 13-
month forecast rather than a one-year ahead forecast because of the reporting lag of one
month. The middle column of the table shows the performance when this reporting lag
would not exist. Here the real-time data is used to make prediction 12 months ahead of
the latest available data, which effectively is a forecast 11 months ahead. The performance
differences between these real-time predictions and the predictions based on revised data
are small and do not suggest that the models improve when using revised data. This
is not surprising, given that the real-time and revised series most often only differ by a
small degree, as shown in Figure A-2 in the appendix. We therefore do not investigate
real-time data in detail but focus on the revised data in this study which allows us to
investigate the models over a longer time period.

Real-time Real-time Revised data
(13 month) (12 months) (12 months)

Gradient boosting 0.63 - 0.62 - 0.62 -
SVR 0.64 (0.33) 0.62 (0.48) 0.63 (0.37)
Forest 0.66 (0.04) 0.64 (0.02) 0.65 (0.02)
Neural network 0.67 (0.01) 0.64 (0.05) 0.66 (0.01)
AR1 0.72 (0.04) 0.69 (0.05) 0.69 (0.06)
Lasso regression 0.73 (0.00) 0.71 (0.00) 0.72 (0.00)
Ridge regression 0.75 (0.00) 0.72 (0.00) 0.73 (0.00)
Linear regression 0.75 (0.00) 0.72 (0.00) 0.73 (0.00)

Table V: Comparison of the forecasting performance when using real-time vs. revised
data. The performance metric is mean absolute error. The models are tested in the
period between August 2000 and November 2019. Target audience: analysts

5.3 Extending the set of features

So far, we have used nine hand-picked key features (see Table I) to predict unemployment
changes. However, the FRED-MD database (McCracken and Ng, 2016) offers a much
richer set of variables—97 of which do not have any missing values between 1959 and
2019. Can we improve the forecasting performance by exploiting all of these? We make
the variables stationary by applying the transformations suggested by the authors of the
database using a change horizon of l = 3 for all variables.

Table VI compares the performance when using the key features (first column) versus
all features (second column) in our baseline setting otherwise. Using all features, the
performance of the best models, gradient boosting, as well as the OLS regression, declines,
whereas the performance of the other models improves or does not change. The random
forest based on all features performs even slightly better than gradient boosting based
on the key features. However, the Diebold-Mariano test them shows that the difference
is not significant (p = 0.72, two-sided).
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An analysis of the Shapley values shows that the machine learning models do not
learn a sparse model when trained on all features. For the three best models, random
forest, SVR, and neural network, the Shapley share of the top 10 features respectively
only account for 41%, 32%, and 34% of the variance in the predictions. To account
for at least 80% we need to consider at least the top 39, 53, 47 features, respectively.
The large number of variables also increases the disagreement between models. While
the agreement in the Shapley share is high between the SVR and the neural network
(correlation of 0.93), it is lower between the forest and the other two methods (0.69,
0.70) (see Figure A-3 in the appendix). Further, unlike the models trained on the key
features only (Figure III), the functional forms do not align well between methods when
trained on all features. Figure A-4 in the appendix shows this for some of the key features.

This is not surprising given the rather small number of observations in our data and
the fact that non-parametric convergence often is slow when the number of features is
high (Stone, 1982).

Key features All features PCA1 PCA2 PCA3 PCA5 PCA7

Gradient boosting 0.56 0.58 0.67 0.53 0.52 0.54 0.57
SVR 0.57 0.57 0.61 0.52 0.52 0.55 0.59
Random forest 0.58 0.55 0.62 0.52 0.53 0.55 0.61
Neural network 0.59 0.57 0.69 0.52 0.53 0.55 0.55
Lasso 0.64 0.63 0.65 0.56 0.54 0.56 0.59
Ridge 0.64 0.58 0.65 0.56 0.54 0.56 0.58
OLS 0.65 0.80 0.65 0.56 0.54 0.56 0.59

Table VI: Comparison of the forecasting performance when using different input data.
The models are trained on the ten key features, all 97 features, or the k top components
of a principal component analysis (PCAk), which was calibrated on all features. The
performance metric is the mean absolute error. The best input data for each model
(rows) is highlighted in bold. Target audience: analysts.

5.3.1 Dimensionality reduction

In the literature on economic forecasting, a standard approach to exploit the predictive
power of many features is to calibrate a dimensionality reduction model (e.g. PCA) and
train the prediction models on the most important components (Stock and Watson, 2002;
Kim and Swanson, 2018). Aggregating redundant variables in the same component allows
models to learn more effectively from a lower dimensional feature representation.

We follow this approach and use a PCA to summarise all 97 features.21 Table VI shows
the performance for the forecast error when the machine learning models are trained on
2, 3, 5, and 7 components of the PCA. The best performance is achieved when only
using two components with the SVR, neural network and random forest, all performing
equally well. Comparing these three models to the gradient boosting model trained on

21We calibrate the PCA model on the training set only and updated it every year as we do for the
machine learning models.
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Figure VII: Absolute loadings of the 97 features on the first (left panel) and second (right
panel) PCA component. The loadings shown are averages based on 30 PCA models
trained on the complete time series. Target audience: analysts.

the key features, the Diebold-Mariano test estimates the following p-values (two-sided)
respectively: 0.054, 0.028, and 0.064. This suggests that using the PCA leads to a superior
performance.

A model based on just two component may seem easy to interpret at first sight.
However, as shown in Figure VII, the loadings of the 97 variables on these components
are not sparse. We show to which group a variable belongs to, where the groups have been
defined by the authors of the data set (see also Ludvigson and Ng (2009)). Most variables
with high loadings on the first component belong to the labour market and output and
income variable groups but other variables have substantial loadings as well. Similarly,
on the second component, the variables with the highest loadings belong to the interest
rate and exchange rates group but other variables also contribute substantially.22. This
suggests that the components do not have a simple economic interpretation.

At the same time, using the PCA components also limits the insights we can draw
from the analysis of Shapley values. The first two components only explain 24% and
9% of the total variance in the data, respectively. Thus, most of the variation in the
variables is not accounted for by the first components of the PCA. Further, making a
machine learning model learn from only a few components will confine its ability to learn
idiosyncratic functions of the individual features underlying that components. Rather,
we expect that all functional forms of the variables loading on the same component will
be similar.

Figure A-5 in the appendix supports this conjecture. It shows the Shapley values based
on the random forest when trained on the top two PCA components. The features in the
top row have a high loading on the first component and low loadings on the second. The

22It is important to note that the variables within the same group are not redundant. For example,
the median absolute correlation (after transformation) of all variables within the labour market group
and within the output and income group only is 0.29 and 0.43, respectively.
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opposite holds for the features in the second row. In each row, the features show highly
similar functional forms. The functional form of the features lagged unemployment and
S&P 500—both included the the set of key features—differ from those shown in Figure
III. We do not observe a quadratic functional form for any of the 97 features when training
the models on the PCA loadings, while two of the five most important features in our
baseline experiment have such a functional form.

While we observe a small performance improvement when using a PCA instead of the
hand-picked key features, this comes at the cost of a more complex model that arguably
provides less economic insights. Our results partially support the idea of an “illusion of
sparsity” Giannone et al. (2021). The authors used linear models to show that making
a model sparse by picking a small set of predictors from the larger set comes with the
cost of an inferior predictive performance. We observe the same for our ridge regression
for which the absolute error falls by 0.06 and 0.1, respectively when using all features
directly or training the model on the PCA components.

However, the performance gains from exploiting all variables are smaller for the ma-
chine learning models. Further, our set of key features was selected based on economic
considerations rather than empirical selection and is thus probably not the best possible
subset. This suggest that the trade-off between sparsity and accuracy might be less pro-
nounced when using nonlinear models because these are able to extract more information
from sparse models.

5.3.2 A richer lag structure

Finally, we extend the number of features by adding more lags of the key variables. The
minimum lag of 12 months constitutes the prediction horizon. We add additional yearly
lags from 24 to 72 months.23 Table VII shows the results of that experiment. While most
models improve when adding more lags, the performance of the SVR and the neural
network does not.

The best performance is achieved by the gradient boosting model when trained on
annual lags of the last four years. We take a closer look at this model. Figure A-6 in
the appendix shows the functional forms for the different lags of the top features. The
12-month lags of the variables contribute most to the predictions. The other lags mostly
make only small contributions to the predictions. It is interesting to observe that the
functional forms differ not only in their size between the lags of the same variables, but
also in there shape. For example, comparing the lags of 12 months and 24 months, we
observe contrary directions of the functional form for both industrial production and S&P
500. Larger lags thus provide a form of correction to the main effects (first lag) explaining
the somewhat better model performance. Whether this improvement in performance
warrants the more complex interpretation of the resulting models depends on the practical
situation at hand.

23We also experimented with adding monthly lags (e.g. 12, 13,.., 23, 24) but this richer set of features
produced inferior results.
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Lags h (in months and steps of 12)
12 12–24 12–36 12–48 12–60 12–72

Gradient boosting 0.56 0.59 0.54 0.52 0.53 0.54
SVR 0.57 0.58 0.60 0.61 0.63 0.64
Forest 0.58 0.58 0.56 0.57 0.56 0.54
Neural network 0.59 0.62 0.61 0.60 0.59 0.59
Lasso 0.64 0.63 0.62 0.62 0.61 0.61
Ridge 0.64 0.64 0.63 0.60 0.59 0.60
OLS 0.65 0.65 0.68 0.70 0.75 0.78

Table VII: Performance comparison when using different lag structures. Lags are shown
in months and are incremented in steps of 12. For example, the lag structure 12–48
contains lags 12, 24, 36, 48 of our key features. The lag of 12 corresponds the baseline
experiment. The error metric is mean absolute error. The lag structure that leads to the
lowest error for each model (row) is highlighted in bold. Target audience: analysts.

5.4 Robustness of Shapley values

We have shown in Figure VI that the performance of the prediction models can be quite
sensitive to random seeds. Here, we investigate whether random seeds also affect the
global and local feature attributions and with that the economic interpretation.

Figure A-7 in the appendix presents the Shapley shares of ten different gradient boost-
ing models, each based on a different random seed. For each variable, there is little
variance in the Shapley share between the models. The functional forms learned by the
models is also rather robust. Figure A-8 shows the Shapley values of the four most
important predictors based on the ten gradient boosting models with different random
initialisations. There are only minor differences between the fitted third-degree polyno-
mials. However, the Shapley values of single data points can differ substantially between
the different model realisations. This is indicated by the vertical lines which show, for
each observation, the range of Shapley values across the ten iterations. This shows the
benefits of model averaging, which will lead to more stable estimates.

Computing exact Shapley values is computationally expensive. It requires testing the
predictions of all possible coalitions of features (see technical appendix). The number
of coalitions grows exponentially with the number of features so that, in practice and
as implemented by the kernel approach in the SHAP Python library (Lundberg and
Lee, 2017), coalitions are sub-sampled to approximate the true Shapley values. When
a coalition does not include a feature k, it is integrated out by using its values within
a background dataset (see again technical appendix). Ideally, the background set is big
and represents the data set well. However, the bigger the background sample, the more
expensive the computation of the Shapley values becomes. In practice, the background
sample is often summarised by using a random sub-sample of the training set, or by ap-
proximating the training set with a few representative centroids using k-means clustering.

In all experiments above, we have used the kernel method with 2000 coalitions, and
25 centroids when estimating Shapley values for all machine learning models. Here, we
investigate the robustness of the Shapley values when altering these two parameters. Fig-
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ure A-9 in the appendix shows the Shapley values of industrial production,24 the most
important predictor, for our most accurate models, gradient boosting and the SVR. We
order all observations by increasing Shapley values. When varying the number of coali-
tions (top row), the gradient boosting model is insensitive to this parameter. Sampling
only 50 coalitions suffices for an accurate estimation of Shapley values. In contrast, we
see some variation in Shapley values for the SVR if only 50 coalitions are sampled. There
is almost no variation anymore if 100 coalitions are used.

The middle row of Figure A-9 shows the effect of varying the size of the background
sample. Here for both the gradient boosting model and the SVR, we only observe some
errors in the estimates for a small background sample size of five.

An alternative to the kernel-based computation of Shapley values is Tree SHAP (Lund-
berg et al., 2020). It is not model-agnostic and can only be used on tree-based models
such as gradient boosting and random forests. It does not estimate Shapley values by
enumerating all possible coalitions of features but by only considering those that actu-
ally are observed in the tree models, which makes this approach computationally much
cheaper by construction.25 The bottom panel of Figure A-9 compares the Shapley values
of industrial production based on the kernel method with those based on Tree SHAP for
both tree-based models. Both methods produce very similar estimates of Shapley values
for gradient boosting and the random forest.

Table VIII shows the computation time required to obtain Shapley values for the 359
data points of the whole test period between 1990–2019.26 With the baseline parameters
of 2000 coalitions, and a background sample of 25, the computation time is about one
minute for the gradient boosting model and 8 minutes for the SVR. But by reducing the
coalitions to 100, the computation time for both methods drops substantially. Using Tree
SHAP, Shapley values are estimated within two seconds.

Background Coalitions Computation time (seconds)
Method sample Gradient Boosting SVR
Kernel 25 100 16.35 76.76
Kernel (baseline parameters) 25 2000 69.74 451.73
Kernel 100 2000 292.06 1772.17
Tree SHAP - - 1.70 -

Table VIII: Computation time (in seconds) when estimating the Shapley values of the
SVR and gradient boosting for the whole test period (1990–2019) containing 359 obser-
vations. Target audience: analysts.

This analysis suggests that, while the exact estimation of Shapley values can be com-
putationally prohibitive, they can be approximated accurately and efficiently. For in-

24The results are qualitatively similar for the others features.
25We set the parameter feature perturbation to interventional. In this way, Tree SHAP, like the kernel

method, ignores dependencies between features (see technical appendix). As another robustness check
we set this parameter to tree path dependent and thus consider correlations between features. Doing
this, the Shapley values of our tree models do not change markedly.

26We train a single model every year and do not use bagging. The computation was conducted on a
single kernel (not parallelised) of an AMD Ryzen 7 3700X.
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stance, in our case study, the Shapley value computation for the full test period can be
reduced to the order of one minute without noteworthy differences in attribution.

6 Discussion

This paper presents a workflow for using machine learning to inform decision making
in situations where transparency and ease of communicating results are key. The three
steps of the workflow are: a model comparison, a decomposition of predictions into feature
contributions, and statistical inference on those contributions. The relative performance
of machine learning models as compared to conventionally used ones can be used to decide
if the further two steps of the workflow are needed to address the black box critique around
mostly more opaque machine learning models.

We applied the workflow to an economic forecasting exercise, predicting the change
of the US unemployment rate one year ahead for the past 30 years.

In the first step of this case study, we found a significantly better performance of ma-
chine learning models compared to linear benchmarks. In the second step, we observed
pronounced nonlinearities learned by the machine learning models that have clear eco-
nomic interpretations. In the third step of the workflow, we use the Shapley regression
framework to find that a larger number of variables is statistically significant when using
machine learning models than for the linear benchmark, which demonstrates that non-
linear machine learning models can extract and uncover a richer set of robust predictive
relationships in the data.

Machine learning methods are increasingly used in economic and social science re-
search. However, most studies using machine learning focus on maximising predictive
accuracy and accept the black box nature of the models. Research that does attempt
statistical inference on machine learning models often uses controlled data, for exam-
ple from randomised controls trials. Our study shows that the use of machine learning
models and statistical inference can be combined to address real-world problems. But
our study also revealed challenges of machine learning modelling on rather small data.
First, we showed that the performance of some of the machine learning models is rather
sensitive to random seeds. Second, the machine learning models differ in how they are af-
fected by experimental parameters such as the type of hyperparameter search (e.g. k-fold
cross-validation vs. blocked cross-validation) or winsorisation. These challenges can be
addressed by model averaging to increase robustness, and by rigorous robustness checks,
respectively. At the same time, our diverse set of machine learning methods, which differ
significantly in their predictive performance, all learned highly similar functional forms
from the data.

When using a broad set of predictive variables instead of a small hand-picked selection,
the predictive performance increased slightly. But as the nonlinear machine learning
models do not learn a sparse model but use most features for prediction, interpreting
their predictions becomes considerably more challenging. Further, we showed that the
functional forms learned were less consistent across model families. When we trained
the models on PCA components the interpretability was reduced as well, because the
components do not have a clear interpretation. At the same time, being trained on
just a few components limits the differential functional forms that the models can learn
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from each underlying feature. Finally, the Shapley regression will suffer from a reduction
of statistical power when being calibrated on a large number of features. Collectively
these considerations suggest that, while our workflow is general and works in principle
for problems with a large number of features, it will deliver more robust and easier to
interpret results when based on a smaller set of features.

More generally, our case study is reminiscent of many real-world settings where one has
a considerable number of features to learn from but a limited number of observations. Our
results suggest that a combination of expert domain knowledge to select key indicators
and robust model properties may lead to the best trade-off between model performance
and the interpretability of results—if such a trade-off exists in the first place.

Many decision makers may not yet be familiar with machine learning methods. How-
ever, we believe that their often better predictive accuracy and ability to detect richer,
more nuanced signals in the data compared to conventional approach justify their use to
inform decisions. With our workflow, model results can be communicated analogously to
familiar and well-understood regression results.

A general caveat to using the Shapley regression framework to communicate model
results is that potentially complex and nonlinear models cannot be fully communicated
by a single statistic, such as Shapley share coefficients. However, we believe that the
combination of high predictive accuracy and the abilities to uncover unknown functional
forms and to perform statistical inference on feature attributions well justifies the use of
our machine learning workflow in decision making situations.
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Kock, Anders Bredahl and Timo Teräsvirta (2014) “Forecasting performances of three auto-
mated modelling techniques during the economic crisis 2007–2009”, International Journal of
Forecasting, Vol. 30, No. 3, pp. 616–631.
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Štrumbelj, Erik and Igor Kononenko (2010) “An efficient explanation of individual classifications
using game theory”, Journal of Machine Learning Research, Vol. 11, pp. 1–18.

Sundararajan, Mukund and Amir Najmi (2020) “The many shapley values for model explana-
tion”, in International conference on machine learning, pp. 9269–9278.

Wang, Mengqiu and Christopher Manning (2013) “Effect of non-linear deep architecture in
sequence labeling”, in Proceedings of the Sixth International Joint Conference on Natural
Language Processing, pp. 1285–1291.

Young, Peyton (1985) “Monotonic solutions of cooperative games”, International Journal of
Game Theory, Vol. 14, pp. 65–72.

38



Results Appendix

Number of models in bagging ensemble
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Figure A-1: Forecasting performance across 10 iterations as a function of the number of
models in the bagging ensemble. The horizontal lines show the mean performance across
all 10 iterations, the vertical bars show ± two standard errors around that mean. Target
audience: analysts.
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Figure A-2: Comparison of real-time and revised series after transformations that make
them stationary (see Table I). Target audience: analysts.
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Figure A-3: Shapley share when machine learning models are calibrated on all 97 features
of the dataset. The three shown models perform best in prediction when calibrated on
all features. Target audience: analysts.
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Figure A-4: Selected learned functional forms for the three best performing models when
using all 97 features. The lines show best-fit third-degree polynomials. Note that the
scale of the vertical axis differs between rows. Target audience: analysts.
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Figure A-5: Learned functional forms of selected features based on the predictions of a
random forest trained on the two first components of a PCA. The term C shows the
loadings of the features on the first and second principal component. The first row shows
features with a high loading on the first principal component and low loadings on the
second component. The second row shows features with a high loading on the second
principal component and low loadings on the first component. The lines show best-fit
third-degree polynomials. Target audience: analysts.
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Figure A-6: Learned functional forms of key predictors at different lags as learned by the
gradient boosting model. The results shown are based on a model trained on 40 features:
Four lags (12, 24, 36, 48 months) for each of the ten key features. Target audience:
analysts.
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Figure A-7: Robustness of the Shapley share. The figure shows the Shapley shares
according to ten different gradient boosting models, each trained with a different random
seed. Target audience: analysts.
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Figure A-8: Robustness of individual Shapley values. Each line shows the functional form
learned by one of 10 gradient boosting models, each trained with a different random seed.
The vertical lines show the maximum range in Shapley values across the 10 iterations for
each observations. Target audience: analysts. Target audience: analysts.
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Figure A-9: Accuracy of Shapley value computations. The top row compares Shapley
values estimated by the kernel method for different coalition sizes. The middle row shows
the Shapley values for different background sample sizes. The bottom row compares
Shapley values estimated by the kernel based method and the TreeShap method for
the two tree-based methods. From the top to bottom row, observations are ordered by
increasing Shapley values of the largest number of coalitions, the largest background
sample, and the kernel-based method, respectively. Target audience: analysts.
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Technical Appendix: Feature imortance measures

We present a concise description of the computation of the two feature importance measure
used in this paper, permutation importance and Shapley values. We also discuss computational
and conceptual challenges.

Permutation importance

The permutation importance of a variable measures the change of model performance when
the values of that variables are randomly scrambled, i.e. permuted. If a model has learnt a
strong dependency between the model outcome and a given variable, scrambling the value of the
variable leads to very different model predictions and thus affects performance. A variable k is
said to be important in a model, if the performance P after scrambling feature k is substantially
worse than when using the original values for k, i.e. Ppermk << P

baseline
k . The value of the

permutation performance Ppermk depends on the realisation of the permutation and variation in
its value can be large, particularly in small datasets. Therefore, it is recommended to average
P
perm
k over several random draws for more accurate estimation and to assess sampling variability.

Note that it is intractable in most applications to evaluate all M ! permutations in a test set
of size M . However, the average of multiple realisations of Ppermk will mostly converge quickly
with the number of permutation making permutation importance a computationally cheap way
to assess feature importance.27

The following procedure estimates the permutation importance.

1. For each feature xk:

(a) Generate a permutation sample xpermk with the values of xk permuted across obser-
vations.

(b) Re-evaluate the test performance for xpermk , resulting in Ppermk .

(c) The permutation importance of xk is given by I(xk) = P
perm
k /P

k
baseline. Alterna-

tively, the difference Ppermk −P
baseline
k can be considered.

(d) Repeat and average over Q iterations and average Īk = 1/Q∑q I(xk).

2. If Ik is based on the ratio of errors Ppermk /P
baseline
k , consider the normalised quantity

Īk = (Ik − 1)/∑k(Ik − 1) ∈ (0,1).28

This ease of use comes at some cost. For example, if two features contain similar information,
permuting either of them will not reflect the actual importance of this feature relative to all other
features. Only permuting both or excluding one would do so. This motivates our comparison
with Shapley values because they identify the individual marginal effect of a feature, accounting
for its interaction with all other features. More generally, permutation importance does not
come with the same analytical guarantees as Shapley values. Additionally, the computation of
permutation importance requires access to true outcome target values to evaluate performance.
In many situations, e.g. when working with models trained on sensitive or confidential data,
these may not be available.

27Given a large test set, bootstrap sub-samples may suffice.
28Note, Ik ≥ 1 in general. If not, there may be problems with model optimisation.
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Shapley values

Shapley values originate from game theory as a general solution to the problem of attributing
a joint pay-off obtained in a cooperative game to the individual players of a coalition based on
their contribution to the game (Shapley, 1953). Štrumbelj and Kononenko (2010) introduced
the analogy between players in a cooperative game and variables in a general supervised model.
In the latter, variables jointly generate a prediction, the pay-off.

The Shapley values of a model offer a local decomposition of each model prediction29 xi
of the form given in Eq. 1, f(xi) = ∑

N
k=0 φk(xi). Here φSk (xi) is the Shapley value associated

with predictor k and φS0 an intercept, usually the model mean prediction. Shapley values come
with a host of appealing analytical properties which are inherited from their game theoretic
origins. Moreover, the decomposition in Eq. 1 does not need to refer to single variables but can
also include interactions or even higher-order terms of interest as introduced by Agarwal et al.
(2019). The below discussion for variable main effects also applies to interactions, but allows
to keep the notation simpler.

The Shapley attribution φSk (xi; f) for variable k in observation xi and model f in (1) is
given by

φSk (xi; f) = ∑

x′ ⊆C(x)∖{k}

∣x′∣!(n − ∣x′∣ − 1)!

n!
[f(xi∣x

′
∪ {k}) − f(xi∣x

′
)] , (4)

where C(x)∖{k} is the set of all possible variable combinations (coalitions) when excluding
variable k and ∣x′∣ denotes the number of variables included in that coalition. Equation 4
is the weighted sum of marginal contributions of variable k to all possible variable coalitions
not including k itself. For example, assuming we have three variables (players) {A,B,C}, the
Shapley value of player C would be φSC(f) = 1/3[f({A,B,C}) − f({A,B})] + 1/6[f({A,C}) −

f({A})] + 1/6[f({B,C}) − f({B})] + 1/3[f({C}) − f({∅})].
There are challenges in evaluating (4), which may be called the no-free-lunch theorem of

Shapley values. One, the number of coalitions x′ to evaluate grows exponentially with the
number of variables. This means that an exhaustive enumeration is not feasible for already
moderate variable sets. Two, we need to evaluate conditional model predictions of the form
f(xi∣x

′
), i.e. models where only variables in x′ are ‘active’, and information from the other

variables is excluded.30 Under the assumption of feature independence, f(xi∣x
′
) can be evalu-

ated by conditional expectations over an informative background dataset b. That is, non-active
variables are integrating out numerically using b. Let ωx′ ≡ ∣x′∣!(n− ∣x′∣−1)!/n! be the combina-
torial weighting factor and x̄′ the set of variables among all not included in x′, then Eq. 4 can
be written as

φSk (xi; f) = ∑

x′ ⊆C(x)∖{k}
ωx′[Eb[f(xi)∣x′ ∪ {k}] −Eb[f(xi)∣x′]] , (5)

with Eb[f(xi)∣x′] ≡ ∫ f(xi)db(x̄′) =
1

∣b∣
∑

b

f(xi∣x̄′) . (6)

The intercept φS0 is determined by the background dataset b motivating its name,

φS0 = Eb[f(∅)] = Eb[f(x̄′ = b)] . (7)

29We label observations by i ∈ {, . . . ,M} here, which is more general than the time series notation used
in Section 3.

30This does not mean a different model which only uses variables in x′. Such a model would need to
be retrained and would generate different predictions, i.e. not be the model we want to evaluate.
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This means that the components φSk measure variable contributions relative to the mean model
prediction in b and that φS0 is a reference point. The choice of b will also affect the interpretation
of Shapley components. That is why b should be informative, e.g. as being representative of
the whole data generating process, or to represent a sub-group of a population, like the group
of untreated in an experimental setting.

We have not yet discussed the first problem above of computational complexity and the case
when features are not independent. These are briefly discussed with further references to the
literature.

1. Computational complexity: The sum over variable coalitions becomes impractical or even
infeasible for already relatively small sets of variables of about 8–10 depending on the
application. For larger set of variables some form of coalition sampling or variable selection
is needed. The Kernel SHAP algorithm Lundberg and Lee (2017) provides an efficient
sampling and evaluation of Shapley contributions in form of a weighted least square
calculation. We have shown in Section 5.4 that only 100 coalitions suffice to accurately
estimate Shapley values.

A variable selection method which provides an exact computation for a subset of features
is presented in Joseph (2019). Often one is not interested in the contributions of all
variables of a model, but only a subset, e.g. a treatment. In this case variables not of
interest can be grouped into a single other component, or sub-groups may serve as super-
variables until an exhaustive evaluation of Equation 4 is possible compatible with one’s
interest. We have used this approach in Section 4.2, when computing the Shapley values
of an interaction of features.

Additionally, the computation of Shapley components can be reduced by limiting the
size of the background b. A default option is the whole training dataset representing
all information the model has learned from. However, this can be impractical for large
datasets. Here either sub-samples or summary points, e.g. cluster centroids, can be used.
We have shown in Section 5.4 that even small background samples of 25 observations
suffice to accurately estimate Shapley values.

2. Feature dependence: The evaluation of conditional expectations (Equation 6) does not
consider dependencies between features, which can lead to feature value combinations
that are nonsensical and would not occur in the real world. We discuss three ways
to address this. First, one can estimate Shapley values of tree-based models for which
there exists an efficient algorithm that accounts for feature dependence (Lundberg et al.,
2020). By comparing Shapley values when respecting or ignoring feature dependence,
one can gauge the importance of feature dependencies. However, caution is warranted
when transferring the findings to other model families, e.g. artificial neural networks.
These may have learned different feature attributions for which the comparison of Shapley
components evaluated under the independence assumption is indicative.

Second, one can net out the effect of higher-order feature interactions using the Shapley-
Taylor index (Agarwal et al., 2019) to understand dependencies between features. This is
an expansion of a function over sets of active features including interactions of any order
of interest analogous to the Taylor expansion of differentiable functions. This means
that the importance of a feature is either its main effect, or the main effect in addition
to different interaction terms. Interaction terms also provide additional information as
shown in the analysis presented in the main text.

Third, the dependence structure within a variable set can be estimated (Aas et al., 2021).
While adding an extra potentially computationally costly step, this has the advantage of
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providing a single attribution for each feature which accounts for the dependence of the
data at least approximatively. It may, however, be argued that it is not necessarily clear
what a single component in a nonlinear model with feature dependence captures. This is
more intuitive for Shapley contributions of feature interactions, which capture the effect
of co-movements of two or more variables.

3. Expectation consistency: As shown by Sundararajan and Najmi (2020), attribution con-
sistency which, casually put, avoids logical contradictions in feature attribution, can be
violated when using conditional expectations for the computation of Equation 6,31 and
a single reference value is advocated for. However, this discards much of the potentially
rich information a model has learned, such as nonlinearities. A solution to this is provided
in Joseph (2019) by an additional condition when comparing different models against a
common background. The models’ intercepts φS0 over the background data b need to
coincide. This is fulfilled in many practical situations where models optimise the same
objective functions, like the mean squared error. Variations in φS0 are of concern as soon
as they reach the order of magnitude of the Shapley components φSk .

None of the above challenges is fatal for the application of Shapley values for model inter-
pretability as we have shown in detail. However, one has to be aware of the possible pitfalls and
consequences of approximations for model interpretations and any decisions based on them.

31See also Janzing et al. (2020).
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Method Implementation Fixed parameters Hyperparameter space

Random forest
scikit-learn n estimators: 500 max depth: [2, 3, 4, 5, 6, 8, 10, 20, 30]∗

RandomForestRegressor criterion: mae max features: [1, 3, 5, 7, 9, 11, 15, 30, 50]∗

Gradient boosting

lightgbm subsample: [0.05, .1, .2, .3, .4, .6, .6, .7, .8, .9, 1]
LGBMRegressor reg lambda: [0, 0.1, 1,10, 20, 50, 100]

reg alpha: [0, 0.1, 1, 2, 7, 10, 50, 100]
num leaves: [2,3,4, 5,10,20,40, 70, 100]
n estimators: [1, 3, 5, 10, 20, 30, 40, 50,

75, 100]∗

max depth: [1, 2, 3, 5, 8, 15]∗

colsample bytree: [0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 1]

SVR

scikit-learn C: [21, 21+1 4
9 , 21+2 4

9 ... 21+9 4
9 ]∗

SVR gamma: [2−7, 2−7+1 6
9 , 2−7+2 6

9 ... 2−7+9 6
9 ]∗

epsilon: [0.0001, 0.001, 0.005, 0.01, 0.05, 0.1,
0.2, 0.3, 0.4, 0.5]∗

Neural network

scikit-learn solver: lbfgs hidden layer sizes: [5, (5, 5), (5, 5, 5), 10, (10, 10), ...,
MLPRegressor max iter: 2000 (10, 10, 10), 15, (15,15), ...

25, (25, 25), (25, 25, 25)]
activation: [relu, tanh]
alpha: [10−5, 10−4, ...,103]

Lasso regression
scikit-learn alpha: [10−5, 10−5+1 9

99 , 10−5+2 9
99 , ..., 10−5+99 9

99 ]
Lasso

Ridge regression
scikit-learn alpha: [10−5, 10−5+1 9

99 , 10−5+2 9
99 , ..., 10−5+99 9

99 ]
Ridge

OLS regression
scikit-learn

LinearRegression

Table A-1: Implementation details on the prediction models. The second column shows the Python package and the respective
name of the machine learning method. The third column shows parameters that we set to a different value than the detault. The
fourth column shows the hyperparameter space.
∗We initially used a large parameter space but have refined it to these values without sacrificing performance.
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