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1 Introduction

Given the potentially destabilizing forces of masses acting in accord on financial
markets, the subject of herd behavior continues to attract attention. The theoret-
ical literature on the subject of herding has converged to a fairly common frame-
work, particularly within the field of market microstructure (Banerjee, 1992; Avery
and Zemsky, 1998; Park and Sabourian, 2011), that defines herding as traders tak-
ing the same action as the majority before them, even though they have private
information that advised them to act differently (Brunnermeier, 2001). This defini-
tion makes explicit the potential inefficiencies that can arise from herding, ranging
from excess volatility to bubbles and crashes. The empirical literature, on the
other hand, is more divided on the question of how to define, measure and test
for herding. Approaches range from estimating structural parameters of a herd-
model (Cipriani and Guarino, 2014) to more descriptive methods like measuring
clustering of prices or trades (Christie and Huang, 1995; Patterson and Sharma,
2010).

A particularly popular measure when analysing herding of subgroups of in-
vestors is the one proposed by Lakonishok et al. (1992) (LSV) (see, for example,
Deng et al., 2018; Cai et al., 2019; Zheng et al., 2021, for just a few recent studies).
It measures the dispersion of the fraction of buyers around the average fraction
across the sample of assets. In essence, it captures whether the subgroup of in-
vestors buys and sells the same assets. The measure is intuitively appealing and
easily implemented.

Yet, a formal definition of what the measure is supposed to estimate has not
been given. If one was able to say that 5 out 10 traders engaged in herd behavior,
what number would one want to get out of LSV? Without a specific estimation
target, a rigorous evaluation of the measure’s performance is impossible. More-
over, it makes a comparison to other empirical approaches, most of which face the
same short-coming, as well as linking it to the theoretical literature difficult. For
example, another popular approach by Chiang and Zheng (2010) interprets herd-
ing as decreased dispersion of returns around the market return (during times of
increased volatility). This interpretation seems to clash with LSV’s understanding
of herding as an increased dispersion of buy-ratios. Still, both approaches refer to
the same literature on herding.

In this paper, I provide a formal estimation target based on typical interpre-
tations of LSV: the fraction of traders that engaged in herding net of what would
be expected if traders acted random and independently. Evaluating the measure
against that target within a general, statistical framework that includes some spe-
cific models from the microstructure literature as special cases, I prove that LSV
underestimates herding. Monte Carlo simulations show that the underestimation
can be anywhere between 20% to 100% of the estimation target.
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The more formal treatment of LSV’s estimation performance also allows me to
connect the measure to the theoretical framework on herd behavior more clearly.
I show that the measure cannot be interpreted in the same way the theoretical mi-
crostructure literature interprets herding, where coordination induced by private
information does not count. LSV, however, cannot differentiate between coordina-
tion induced by private or public information (such as observed behavior of others,
price movements etc.). Empirical studies, therefore, try to uncover the causes of
herding by regressing LSV on covariates that proxy for different sources of poten-
tial coordination (see Kremer and Nautz, 2013, and references therein). However,
given that LSV’s bias varies, for example, with the number of traders, and, in
practice, may differ for different sources of coordination, it cannot be expected
that such regressions yield consistent estimates.

Finally, I argue that LSV is best understood as a purely statistical test on
binomial overdispersion. Treated as such, I show that LSV has inferior size and
power properties than alternative tests less known in the field of finance.

Measuring herding is an inherently difficult task, particularly if one considers
the stricter, microstructure definition of herding since the motivation to trade in
a certain direction is not observable. Unfortunately, this paper does not offer a
solution.

Rather, the contribution of this paper is to uncover and highlight significant
short-comings of one of the most popular measures in the field. In doing so, I urge
the practitioner and researcher to apply and interpret the measure with caution.
Note that the bias that I demonstrate in this paper arises in a framework that is
internally consistent with LSV’s own reduced-form view of herding. Earlier critics
of the measure have already pointed out that LSV cannot differentiate between
coordination that arises from imitation vs acting on the same information, i.e. in-
tentional vs spurious herding (Bikhchandani and Sharma, 2000). Such discussions,
however, stress the potential over-estimation of herding when herding is defined in
its stricter, microstructure sense. Instead, I demonstrate that LSV under-estimates
herding even if herding is specified in the way the measure is typically interpreted.

Another paper that demonstrates a bias in the LSV measure is the one by
Frey et al. (2014). Their demonstration, however, is purely numerical and for one
specific statistical model of herding. Moreover, their statistical model assumes
that within any given asset, traders still act independently from each other which
is a narrower view on herding than the one taken in this paper. Instead, I prove
the bias analytically under a very general framework that incorporates basic ideas
from the theoretical herding literature and I present more extensive numerical
exercises that show that the bias is non-negligible.

The remainder of this paper is organized as follows. Section 2 introduces the
LSV measure. Section 3 defines the estimation target, states the bias of LSV ana-
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lytically and demonstrates its magnitude via Monte Carlo simulations. In Section
4, I contrast LSV with the market microstructure literature and attempt a more
conceptual interpretation. Section 5 evaluates LSV’s size and power characteris-
tics as a test of binomial over-dispersion. In Section 6, I discuss related measures
of investor herding. Finally, Section 7 concludes.

2 The LSV herding measure

The measure of Lakonishok et al. (1992) is applied to transaction data of a sub-
group of investors, such as quarterly equity holdings of mutual funds or daily stock
market transactions of retail traders (see Brown et al., 2014; Dorn et al., 2008).
The measure is based on the buy-ratio statistic defined as the number of buyers,
Bi, over the total number of traders among the considered subgroup of investors,
Ni, in stock i.1 Specifically, the LSV measure is computed as

LSVi =

∣∣∣∣Bi

Ni

− p
∣∣∣∣− E0

∣∣∣∣ BNi

− p
∣∣∣∣ , (1)

where, under the null of no herding, it is assumed that B ∼ Bino(Ni, p). That
is, p is the expected proportion of traders buying in case of no herding. Note
that p is assumed to be constant over assets i = 1, . . . , I and is thus estimated as
p̂ =

∑
iBi/

∑
iNi.

Let me consider a specific example to explain the basic idea of LSV. First,
note that the measure looks at the aggregated behavior of investors over a fixed
time-horizon, there is no inter-temporal component, even though the measure is
usually applied to panel data. I, therefore, consider a single period of arbitrary
length throughout the paper and do not carry a time subscript. Now, because
the measure considers only a subgroup of investors, buy-ratios can deviate from
0.5. For the moment, neglect the expectation term in (1) and let me assume that
the investor group buys as much as it is selling across the set of assets such that
p̂ = 0.5. Therefore, in any single asset where the investor group buys as much as
it sells, the measure is zero, indicating no herding. If, on the other hand, there is
a majority of investors buying or selling an asset, the buy-ratio will significantly
deviate from 0.5, indicating herding. That is, LSV captures the degree to which
investors buy and sell the same assets at the same time, focusing on the “crowd”
aspect of herding. Since buy-ratios would deviate from 0.5 purely by chance, the
expectation term centres the measure over zero under the null model.

The LSV measure is typically interpreted at its average level LSV =
∑

i LSVi/I.
Assuming an average measure of 0.03 a typical interpretation reads:

1The number of buyers is usually based on the net-position of traders. Alternatively, one may
count each single transaction as in Choe et al. (1999).
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“We can think of this average herding measure as meaning that if 100
funds trade a given stock-quarter, then approximately three more funds
trade on the same side of the market than would be expected if each
fund randomly and independently chose stocks.” (Wermers, 1999, p.
593)

3 Biased herding estimation

3.1 Analytical result

From the interpretation of the LSV measure, one can conclude that it attempts to
estimate the fraction of traders that engaged in herd behavior. More specifically,
let the number of buyers B be additively separable into the number of buyers
B0 that were generated under a no-herding regime and the number of buyers Bh

generated under a state of herding. The estimation target can then be expressed
as θ := |Bh − pNh|/N where Nh is the number of transactions under the herding
regime and p is the expected proportion of buys under no-herding. That is, the
estimation target is the number of herding buys net of the buys that we would
have expected in case of no-herding over the total number of trades.

I prove in the Appendix that the LSV measure is a biased estimator of this
target. Specifically, let B = B0 + Bh, where B0 ∼ Bino(N − Nh, p) and Bh ∼ F
with 0 < Nh < N , p ∈ (0, 1) and F being some arbitrary distribution different
from Bino(Nh, p) with existing mean absolute deviation, then

E[LSV ] ≤ E[θ]. (2)

A necessary condition for (2) to hold with equality is the trivial case of Nh = 1
and pN ∈ Z.

3.2 Numerical result

To demonstrate the magnitude of the bias, I generate data according to the fol-
lowing setups.

Setup 1 F = wBino(Nh, p+δ)+(1−w)Bino(Nh, p−δ) with δ, w ∈ {0.05, 0.2}×
{0.5, 0.7}.

Setup 2 F = Beta-Bino(Nh, α, β) with (α, β) ∈ {(10, 10), (5, 15)}.
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I fix the trader population at N = 100 and set Nh = 1, . . . , N − 1.2 The
no-herding trades are generated according to Bino(N −Nh, p) with p = 0.5. For
now I assume p to be known. The cross-section of assets is fixed at I = 100. For
each setup I generate 10000 draws. For each draw the bias is computed as3

Bias :=

∑
i LSVi
I

−
∑

i |Bh
i − pNh|/N
I

. (3)

Note that both setups are very much in line with the theoretical literature on
herding. Setup 1 closely resembles Park and Sabourian (2011) where a fraction of
trader-types (δ) changes its behavior (from selling to buying in case of buy-herding,
and vice versa for sell-herding) after having observed a sufficient imbalance of
buys/sales. In any single asset, this leads trades to be generated under two different
regimes of Bernoulli distributions. The term w is the fraction of assets in which
buy-herding occurs, and 1− w the fraction of assets experiencing sell-herding.

Setup 2 reflects Pólya’s urn model, which can be thought of as a continuous
version of the previous setup. After each draw from an urn containing balls of two
colors, the same ball and an additional ball of the same color are returned to the
urn. That is, with each buy/sell a marginal trader-type enters the market wanting
to trade in the same direction as the previous one. The limiting distribution of
the number of balls drawn of a certain color from such an urn is the beta-binomial
distribution.

Figure 1 shows the average bias (left column) and the average relative bias
(right column) across all draws. For each setup the bias is sizeable and fairly
similar, converging to an under-estimation of around 4%, which is equivalent to
20% to 80% relative to the estimation target. The relative frequency of buy- as
opposed to sell-herding (w) does not affect the bias, because p is assumed to be
known and buy-herding is as strong as sell-herding.

4 Further considerations

4.1 Herding vs contrarian behavior

The market microstructure literature on herding distinguishes between two types of
investor behavior: herding, where past trades increase the probability of observing
another trade in the same direction, and contrarianism, where past trades increase
the probability of observing a trade in the opposite direction.

The LSV measure distinguishes between herding and contrarianism implicitly.
Statistically speaking, LSV is a measure of binomial overdispersion. So the as-
sumption underlying LSV is that herding leads to more extreme buy-ratios than

2Results for a smaller trader population of N = 20 are very similar.
3For Setup 1 the estimation target can be computed analytically, as shown in the Appendix.
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Figure 1: Bias evaluation - p known
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Notes: This figures shows the average absolute and relative bias across 10000 simulations of
two different setups of trading under herding. In Setup 1, buys during the herding regime are
generated according to Bh

i ∼ wBino(Nh, p+δ)+(1−w)Bino(Nh, p−δ) with δ, w ∈ {0.05, 0.2}×
{0.5, 0.7}. In Setup 2, Bh

i ∼ Beta-Bino(Nh, α, β) with (α, β) ∈ {(10, 10), (5, 15)}. For each asset
i = 1, . . . , I with I = 100, observed buys are given by Bi = B0

i +Bh
i where B0

i ∼ Bino(N−Nh, p)
with N = 100, p = 0.5 and Nh = 1, . . . , N − 1 (x-axis). For each simulation, the bias is given by
Bias :=

∑
i(LSVi − θi)/I. The relative bias is given by Bias/

∑
i θi/I.
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what would be expected if investors traded independently and with the same
propensity to buy; and that the self-defeating nature of contrarianism leads to less
extreme buy-ratios, clustering more strongly around the overall propensity to buy.
Given that (2) is valid independent of the dispersion of buy-ratios generated under
F , the LSV measure underestimates herding and over-estimates contrarianism, if
we follow LSV’s implicit distinction of these two types of behaviors.

4.2 Sources of investor coordination

Another important distinction in the microstructure literature on herding is the
one between public and investors’ private information. Herding arises when in-
vestors take the same action as the majority before them (past actions are part
of the public information set by being either directly observable or implicitly con-
tained in price movements) even if they had private information advising against
that action. However, private information on its own is already a source for cre-
ating imbalances in buy-ratios.

Viewing the LSV measure through the lens of measuring binomial dispersion
shows that LSV is incapable of distinguishing between the different sources of
coordination. Take as an example Pólya’s urn model of Setup 2 above. The
beta-binomial distribution resulting from that urn experiment in the limit is over-
dispersed compared to a binomial distribution. However, we can obtain the same
distribution by letting traders act independently from each other and with the
same propensity to buy, but drawing that propensity before the start of trading
from a beta distribution. The beta distribution simply reflects that across assets
information is distributed heterogeneously.

So while (2) established an under-estimation of herding, the previous example
shows that in a more strict, microstructure sense of the term, the LSV measure
can over-estimate herding as well. This is sometimes referred to as spurious vs
intentional herding (Bikhchandani and Sharma, 2000).

Not being able to differentiate between different sources of coordination is
particularly problematic if those sources have different implications for an asset.
While one form of investor coordination might be beneficial for the price discovery
process (informed trading), another form might be harmful to financial stability
(fire-sales).

Therefore, in order to uncover the consequences of herding measured using
LSV, a popular approach is to sort assets into portfolios depending on their level
of LSV and check whether the return on the high-minus-low portfolio displays
persistent (indication of informed trading) or transitory gains (Cai et al., 2019).
To understand the consequences of herding, on the other hand, LSV is often re-
gressed on covariates reflecting different sources of coordination as predicted by
the theoretical literature (Kremer and Nautz, 2013). For example, small cap stocks
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are expected to be associated with higher levels of herding, because asymmetric
information is assumed to be stronger in such stocks, which, in turn, gives rise to
herding (Venezia et al., 2011).

These approaches to understand the causes and consequences of herding may
result in spurious or inconclusive results given that the bias varies, for example,
with the number of traders. Moreover, in practice we cannot expect that the
bias is uncorrelated with different sources of coordination, leading to potentially
inconsistent estimates of the actual effects of these sources on herding. Finally,
to make predictions on the effects of variables on empirically measured herding
requires that one understand how the measure relates to the model from which
the predictions are derived. The LSV measure, however, does not offer such a link,
nor do many of the other empirical measures.

4.3 Estimating p

The under-estimation of herding demonstrated in (2) was derived under the as-
sumption that the buy-propensity of traders under no-herding is known. The over-
estimation sketched in the previous subsection resulted because the asset specific
buy-propensities were not known. If p has to be estimated, LSV may under- or
over-estimate herding, depending on the distance of p to its estimator, p̂, and the
number of trades during the herding phase (see Appendix).

The dependence of the bias on these parameters is non-monotonic. This adds
another complication in interpreting the LSV measure and for using it in compar-
ative studies, such as regression analyses, where relative differences of the LSV
measure across time or population may be more important than its level.

4.3.1 Constant p

To demonstrate the effect of estimating p, I repeat Setup 1 and 2 but with p
estimated via p̂. The probability of a buy in the no-herding regime is still assumed
to be the same across assets.

Figure 2 shows the results. In setups where buy and sell herding occur asym-
metrically, the estimation of the true propensity to buy in the no-herding regime
adds a significant proportion to the bias. Particularly for the beta-binomial setup,
the asymmetric case yields a bias of 20% (or 80% when measured relative to the
estimation target) when all but one trade are generated under the herding regime.

4.3.2 Idiosyncratic p

Finally, to demonstrate how over-estimation can arise from unknown, idiosyncratic
buy-propensities, I consider a third setup:

8



Figure 2: Bias evaluation - p estimated
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Notes: This figures shows the average absolute and relative bias across 10000 simulations of
two different setups of trading under herding. In Setup 1, buys during the herding regime are
generated according to Bh

i ∼ wBino(Nh, p+δ)+(1−w)Bino(Nh, p−δ) with δ, w ∈ {0.05, 0.2}×
{0.5, 0.7}. In Setup 2, Bh

i ∼ Beta-Bino(Nh, α, β) with (α, β) ∈ {(10, 10), (5, 15)}. For each asset
i = 1, . . . , I with I = 100, observed buys are given by Bi = B0

i +Bh
i where B0

i ∼ Bino(N−Nh, p)
with N = 100, p = 0.5 and Nh = 1, . . . , N − 1 (x-axis). For each simulation, the bias is given
by Bias :=

∑
i(LSVi − θi)/I. The relative bias is given by Bias/

∑
i θi/I. p is not known and

is estimated by p̂ =
∑

iBi/IN .
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Setup 3 Bi = B0
i where B0

i ∼ Bino(N, pi) and pi ∼ Beta(α, β) with (α, β) ∈
{(10, 10), (5, 15)}.

The size of the cross-section of assets is fixed at I = 100. I let the number
of traders active in the cross-section vary from N = 10, . . . , 100. Table 1 shows
the average, percentage LSV measure for this setup. Given that herding does not
occur in this setup, LSV equals the bias.

For N = 100, not accounting for the idiosyncrasy in buy-propensities across
assets leads to an over-estimation of herding of 5.61% for the symmetric case
(α = β) and 4.81% for the asymmetric one. The bias is smaller in the asymmetric
case, because the variance of the beta distribution is smaller compared to the
symmetric setup.

The monotonic increase in the LSV measure from N = 10 to N = 100 is
striking and adds another complication to its interpretation. Let me take the
standpoint of a proponent of the LSV measure and argue that the idiosyncrasy
of buy-propensities is a valid case of investor coordination that I wish to measure
(even if it simply reflects that traders act on similar information and that signals
across different assets have different information strength, but otherwise traders
still act independently from each other). In that case, the estimation target is
equivalent to the mean absolute dispersion of buy-propensities, here given by the
mean absolute deviation of the beta distribution, E|p − E[p]|.4 However, the es-
timated dispersion varies with the number of investors active in the asset, even
though the underlying distribution of buy-propensities did not change. Also note
that convergence to the target value cannot be achieved with conventional sample
sizes. This is an undesirable property of LSV that, so far, has not received much
attention and must concern even the hardest advocate of the measure.5

5 Power and size of LSV

Given the bias and difficulty of economic interpretability of the LSV measure, one
may simply treat it as a purely statistical measure of binomial over-dispersion.
Therefore, I compare it to other tests of binomial excess variability better known
in the natural science literature. Specifically, I will compare the LSV measure

4Note the subtle difference to the estimation target and its underestimation presented earlier.
Previously, the model included a constant, unknown buy-propensity under no-herding such that
instead of E[p] we would have used pNh/N , with p being the true buy-propensity.

5An exception is the study by Frey et al. (2014). Using a binomial-mixture model for the
cross-section of assets with two buy-propensities, one for buy-, one for sell-herding, they show
that LSV underestimates the deviation of these buy-propensities from the one under no-herding,
and that LSV increases with the number of traders such that the bias decreases.
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Table 1: LSV in % under Setup 3

N MAD
(α, β) 10 20 30 40 50 60 70 80 90 100

(10,10) 2.58 3.48 4.02 4.40 4.72 4.97 5.16 5.34 5.49 5.61 8.81
(5,15) 2.11 2.96 3.43 3.77 4.05 4.25 4.43 4.59 4.70 4.81 7.59

Notes: This table shows the average LSV in % across 10000 simulations of trading without
herding, but unobserved, asset specific buy-propensities. Specifically, for each asset i = 1, . . . , I
with I = 100, Bi = B0

i where B0
i ∼ Bino(N, pi) with N = 10, . . . , 100 and pi ∼ Beta(α, β) with

(α, β) ∈ {(10, 10), (5, 15)}. For each simulation, LSV is given by
∑

i LSVi/I =
∑

i |bri − p̂|/I −
E0|BN − p̂|, with p̂ =

∑
iBi/IN . MAD is the mean absolute deviation of the beta distribution,

E|p− E[p]|.

against the binomial variance test (Cochran, 1954) and the C(α) test (Tarone,
1979) which are given by

Xv :=
I∑

i=1

(Bi − p̂Ni)
2

Nip̂(1− p̂)
a∼ χ2(I − 1) and (4)

Xc :=
(
∑I

i=1
(Bi−p̂Ni)

2

p̂(1−p̂) −
∑I

i=1Ni)
2

2
∑I

i=1Ni(Ni − 1)

a∼ χ2(1), (5)

respectively.
The significance of LSV is typically determined by t-tests based on standard

asymptotic arguments.6

5.1 Size

For the size evaluation I draw the number of buys from a binomial distribution
with p = 0.5 and Ni = 5 + xi with xi ∼ Pois(λ) where Pois is the Poisson
distribution. That is, I let the number of traders in each asset vary as it would
be the case in empirical applications. I set λ = 45. I draw 10000 samples for
varying sample sizes I = 100, . . . , 1000. The fraction of rejected null hypotheses is
examined at the usual significance levels α = 0.1, 0.05, 0.01. Figure 3 presents the
results.

I find that the LSV measure is too conservative compared to the nominal
significance level. That is, it rejects the null-hypothesis not often enough, even in

6Note that in empirical applications the number of traders in each asset typically varies,
which means that in practice very large cross-sections may be needed to make the asymptotic
arguments apply.
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Figure 3: Size evaluation
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Notes: This figure shows the fraction of rejected null hypotheses of no-herding (y-axis) among
10000 simulations under no herding. In each simulation buys are generated according to Bi ∼
Bino(Ni, p) with Ni ∼ 5 + Pois(λ) with p = 0.5 and λ = 45 for i = 1, . . . , I and sample size
I = 100, . . . , 1000 (x-axis).

large cross-sections. The rejection rates of the other test-statistics are relatively
close to their nominal levels.

5.2 Power

To evaluate the power of the tests, I use the alternative models presented in Setup
1 and 2. Contrary to the bias evaluation exercise, however, I will exclusively
consider setups with p being estimated. I again fix N and I at 100. To control
the degree of the deviation from the null model I vary the number of trades in the
herding regime from 1 to N -1. I repeat each setup for 10000 draws.

Figure 4 presents the rejection rates. We find that across the different setups,
LSV usually has the smallest power, the variance test the highest.
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Figure 4: Power evaluation

Notes: This figure shows the fraction of rejected null hypotheses of no-herding (y-axis) among
10000 simulations under the alternative of herding. In each simulation the buys are generated
according to Bi = B0

i + Bh
i , where B0

i ∼ Bino(N − Nh, p) with N = 100 and p = 0.5 for
i = 1, . . . , 100 and Nh = 1, . . . , N − 1 (x-axis). Bh

i is either drawn from F = wBino(Nh, p +
δ) + (1 − w)Bino(Nh, p − δ) with δ, w ∈ {0.05, 0.2} × {0.5, 0.7} (Panel A-D), or from F =
Beta-Bino(Nh, α, β) with (α, β) ∈ {(10, 10), (5, 15)} (Panel E-F).
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6 Other measures of investor herding

While LSV is probably the most widely used empirical measure of herding based
on investor level data, other measures have been proposed, most notably the one
by Sias (2004). Sias (2004) measures the correlation of the buy-ratios over adjacent
periods and is therefore not directly comparable. Still, as the estimation of the
average buy-ratio in each period is an integral part of the measure, some of the
criticism, especially around spurious vs intentional herding, applies here as well.

More directly related to the LSV measure is the one by Frey et al. (2014),
which uses the squared instead of the absolute mean deviation. One can derive an
equivalent bias to the one demonstrated above for their measure as well (a proof is
given in the Appendix). This seems to be in contradiction with the unbiasedness
shown by Frey et al. (2014).

The working assumption in Frey et al. (2014) is that under herding the number
of buys are distributed according to a binomial mixture model in the cross-section
of assets. In any individual instance, therefore, the number of buys are still the
realization from a binomial distribution, either drawn from a binomial with higher
or lower buy-propensity compared to the one under no herding. That is, even
under herding each individual trader still trades independently of the others. This
is at odds with the common idea of herd behavior.

In contrast, I have assumed that in the case of herding only a part of the trades
in an individual asset follows a binomial distribution. The rest of the trades under
the herding regime follow some other distribution.

7 Conclusion

I have shown that the LSV measure is a biased estimator and that a structural,
economic interpretation of the measure is difficult at best. The measure is best
understood as a purely statistical measure of binomial over-dispersion, in which
case, however, other measures exist that have better size and power properties.

More broadly, this paper has shown that the empirical research of investor
herding requires further attention. It lacks a clear definition of what constitutes
herd behavior, a description of how the empirical treatment is linked to the theo-
retical literature, and a demonstration that the empirical approach taken indeed
measures an economically meaningful target.
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Appendix

A Proof of LSV bias

A.1 Known p

Let B = B0 + Bh where B0 ∼ Bino(N − Nh, p) and Bh ∼ F with 0 < Nh <
N , p ∈ (0, 1) and F some arbitrary distribution different from Bino(Nh, p) with
existing mean absolute deviation.

LSV is given by

LSV =

∣∣∣∣BN − p
∣∣∣∣− E0

∣∣∣∣BN − p
∣∣∣∣ , (6)

where E0 indicates that expectation is taken under the assumption that B ∼
Bino(N, p). Substituting for B, expanding with pNh, and rearranging terms we
get

LSV =
1

N

{
|Bh − pNh +B0 − p(N −Nh)| − E0|B − pN |

}
. (7)

From the triangle inequality it follows that

LSV ≤ |B
h − pNh|
N

+
1

N

{
|B0 − p(N −Nh)| − E0|B − pN |

}
. (8)

Taking expectations, we get

E[LSV ] ≤ E[θ] +
1

N

{
E|B0 − p(N −Nh)| − E0|B − pN |

}
. (9)

What remains to be shown is that

E|B0 − p(N −Nh)| ≤ E0|B − pN | (10)

with equality if and only if pN ∈ Z and Nh = 1, which follows immediately from
Theorem 3 in Diaconis and Zabell (1991).

A.2 Unknown p

If p has to be estimated via p̂ we can arrive at a similar inequality to (9):

E[LSV ] ≤ E[θ] +
Nh|p− p̂|

N
+

1

N

{
E|B0 − p̂(N −Nh)| − E0|B − pN |

}
. (11)

Note that E0 evaluates the expectation at p̂, whereas E evaluates the expectation at
the true parameter p. It is not possible to establish if one expectation is generally
larger than the other. Additionally, the presence of Nh|p− p̂|/N complicates the
matter, as it adds an upward bias.
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A.3 Estimation target under Setup 1

Let the estimation target be E[θ] = E[ |B
h−pNh|
N

] and Bh ∼ w1Bino(Nh, p1) +
w2Bino(Nh, p2). Then

E[θ] =
2∑

j=1

wj

{
2v(1− pj)g(v;Nh, pj) + (pj − p)Nh(1− 2G(k − 1;Nh, pj))

}
, (12)

where v = bNhpc, G is the distribution function of the binomial and g its density.
The proof follows from the following corollary that I derive along the lines of

the proof of Todhunter’s formula stated in Lemma 1 in Diaconis and Zabell (1991).

Corollary 1. For all integers 0 ≤ a < b ≤ n,

b∑
k=a

(k − np̃)g(k;n, p) = (13)

a(1− p)g(a;n, p)− (n− b)pg(b;n, p) + (p− p̃)nG(a, b;n, p).

Proof.

b∑
k=a

(k − p̃n)g(k;n, p) (14)

=
b∑

k=a

((p+ 1− p)k − p̃n+ np− np)g(k;n, p)

=
b∑

k=a

((1− p)k − (n− k)p)g(k;n, p) +
b∑

k=a

(p− p̃)ng(k;n, p)

= a(1− p)g(a;n, p)− (n− b)pg(b;n, p) + (p− p̃)nG(a, b;n, p).

Using this corollary it is straight forward to show that

n∑
k=0

|k − p̃n|g(k;n, p) (15)

= 2bnp̃c(1− p)g(bnp̃c;n, p) + (p− p̃)n(1− 2G(bnp̃c − 1;n, p)),

from which the result in (12) follows immediately.
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B Bias of Frey et al.’s (2014) measure

The measure of Frey et al. (2014) is given by

FHW =
(B − pN)2 −Np(1− p)

N(N − 1)
. (16)

Given that FHW work with the squared, rather than absolute deviation we define
an equivalent estimation target, θ̃ := (Bh − pNh)2/(N − 1)N .

Operating under the same assumptions as in A.1, substituting for B and ex-
panding with pNh, we obtain

FHW =
(Bh − pNh)2

N(N − 1)
(17)

+
2(Bh − pNh)(B0 − p(N −Nh))

N(N − 1)
(18)

+
(B0 − p(N −Nh))2 −Np(1− p)

N(N − 1)
. (19)

Taking expectations, we get

E[FWH] = E[θ̃] +
Cov(Bh, B0)

N(N − 1)
− Nhp(1− p)

N(N − 1)
. (20)

So far, I have only specified the marginal distributions of Bh and B0, which seems
to suggest independence between the two random variables. If that would be the
case, FWH underestimates herding. Of course, more realistically the herding and
no-herding regimes are not independent. In that case, without further assump-
tions, the bias can go either direction.
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